= (C CS61B Textbook Q

15.2 Recursion

Here we go again...

Now that we've done a couple of nested for loops, let's take a look at our favorite problem:

recursion.

[Asymptotics2, Video 4] Tree Recursion

Consider the recursive function £3 below:

public static int £3(int n) 3
if (n <= 1)
return 1;
return £3(n-1) + £3(n-1);

What does this function do?

Let's think of an example of calling £3(4) :



The first call will return £3(4-1) + £3(4-1)
Each £3(3-1) call willbranch outto f3(2-1) + £3(2-1)
Then for each £3(2-1) call, the condition if (n <= 1) will be true, which will return 1.

What we observe at the end is that 1 will be returned 8 times, meaning we have
£3(2-1) summed 8 times.

Therefore, £3(4) will return 8.

We can visualize this as a tree, where each level represents a recursive call and each node
value represents the argument to the function :

4

_’/\\\

% 3
__--"-.—_-h--"-q‘__ __,.-'".-F‘-_-‘--"-q‘__
2 2 2 2

S - = = =

Visualization of f3's recursive calls

You can do a couple more examples, and see that this function returns 2N 1. Visualizing
the recursive calls is extremely useful for getting a sense of what the function is doing, and
we will discuss a few methods of determining runtime in recursive functions.

Method 1: Intuition

Based on the visualization below, we can notice that every time we add oneto n we
double the amount of work that has to be done:



4 4
3 3 3 3
2 2 2 2 2 - 2 2
= S = = N = N = = = = = < o

Then, adding one to n N times means doubling the amount of work N times, which results
in the intuitive answer for runtime to be 2*V.

Method 2: Algebra

Another way to approach this problem is to count the number of calls to £3 involved.
Utilizing the same tree visualization above, we can see that the number of calls to f3 at
each recursive level is equivalent to the number of nodes at each recursive level of the tree.
For instance, the number of calls we made to £3 at the top level is 1, at the second level is
2, at the third level is 4, etc.

The total number of calls to f3 then is the sum of the number of nodes at each recursive
level, which can be expressed as the equation below:

C(N)=1+2+4+..+2V1
Applying the formula we saw earlier for the sum of the first powers of 2:
1+2444+8+...+Q=20Q —1
Substituting @ with 2V~1, we get:
C(N)=2Q—-1=22"1H -1=2" -1

The work during each callis constant , so the overall runtime for 3 is 8(2%).



Method 3: Recurrence Relation (Out of Scope)

This method is not required reading and is outside of the course scope, but worth
mentioning for interest's sake.

We can use a "recurrence relation" to count the number of calls, instead of an algebraic
approach. This looks like:

C(1) = 1C(N) = 2C(N — 1) + 1

Expanding this out with a method we will not go over but you can read about in the slides
or online, we reach a similar sum to the one above. We can then again reduce it to 2N _ 1 ,
reaching the same result of 6(2%).

Previous
15.1 For Loops

Next
15.3 Binary Search



