
ADTs, BSTs
Lecture 16 (Data Structures 2)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• Insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation Tips

Abstract Data
Types
Lecture 16, CS61B, Spring 2024

Interfaces vs. Implementation

In class:
● Developed ALists and SLLists.
● Created an interface List61B.

○ Modified AList and SLList to implement List61B.
○ List61B provided default methods.

In projects:
● Developed ArrayDeque and LinkedListDeque.

○ Each class implemented the Deque interface.

List61B

AList SLList

Deque

Array
Deque

LinkedList
Deque

Interfaces vs. Implementation

With DisjointSets, we saw a much richer set of possible implementations.

DisjointSets

ListOfSetsDS QuickFindDS QuickUnionDS
WeightedQuickU

nionDS

Abstract Data Types

An Abstract Data Type (ADT) is defined only by its operations, not by its
implementation.

Deque ADT:
● addFirst(Item x);
● addLast(Item x);
● boolean isEmpty();
● int size();
● printDeque();
● Item removeFirst();
● Item removeLast();
● Item get(int index);

Deque

Array
Deque

LinkedList
Deque

ArrayDeque and LinkedList Deque are
implementations of the Deque ADT.

Another example of an ADT: The Stack

Recall, the Stack ADT supports the following operations:
● push(int x): Puts x on top of the stack.
● int pop(): Removes and returns the top item from the stack.

insertBack()
getBack()

get(int i)
deleteBack()

push(int x)

pop()

4
6
2

The Stack ADT: yellkey.com/likely

Recall, the Stack ADT supports the following operations:
● push(int x): Puts x on top of the stack.
● int pop(): Removes and returns the top item from the stack.

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

insertBack()
getBack()

get(int i)
deleteBack()

push(int x)

pop()

4

The Stack ADT

The Stack ADT supports the following operations:
● push(int x): Puts x on top of the stack.
● int pop(): Removes and returns the top item from the stack

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

Both are about the same. No resizing for linked lists, so probably a lil faster.

insertBack()
getBack()

get(int i)
deleteBack()

push(int x)

pop()

4

The GrabBag ADT: yellkey.com/involve

The GrabBag ADT supports the following operations:
● insert(int x): Inserts x into the grab bag.
● int remove(): Removes a random item from the bag.
● int sample(): Samples a random item from the bag (without removing!)
● int size(): Number of items in the bag.

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

insertBack()
getBack()

get(int i)
deleteBack()
remove()
insert(int x)

sample()
size(int i)

The GrabBag ADT

The GrabBag ADT supports the following operations:
● insert(int x): Inserts x into the grab bag.
● int remove(): Removes a random item from the bag.
● int sample(): Samples a random item from the bag (without removing!)
● int size(): Number of items in the bag.

Which implementation do you think would result in faster overall performance?
A. Linked List
B. Array

insertBack()
getBack()

get(int i)
deleteBack()
remove()
insert(int x)

sample()
size(int i)

Abstract Data Types in Java

One thing I particularly like about Java is the syntax differentiation between
abstract data types and implementations.
● Note: Interfaces in Java aren’t purely abstract as they can contain some

implementation details, e.g. default methods.

Example: List<Integer> L = new ArrayList<>();

List

ArrayList
Linked
List

Collections

Among the most important interfaces in the java.util library are those that extend
the Collection interface (btw interfaces can extend other interfaces).
● Lists of things.
● Sets of things.
● Mappings between items, e.g. jhug’s grade is 88.4, or Creature c’s north

neighbor is a Plip.
○ Maps also known as associative arrays, associative lists (in Lisp), symbol

tables, dictionaries (in Python).

Collection

List Set Map

Map Example

Maps are very handy tools for all sorts of tasks. Example: Counting words.

Map<String, Integer> m = new TreeMap<>();
String[] text = {"sumomo", "mo", "momo", "mo",
 "momo", "no", "uchi"};
for (String s : text) {
 int currentCount = m.getOrDefault(s, 0);
 m.put(s, currentCount + 1);
}

m = {}
text = ["sumomo", "mo", "momo", "mo", \
 "momo", "no", "uchi"]
for s in text:
 current_count = m.get(s, 0)
 m[s] = current_count + 1 Python

equivalent

sumomo 1

mo 2

momo 2

no 1

uchi 1

Java Libraries

The built-in java.util package provides a number of useful:
● Interfaces: ADTs (lists, sets, maps, priority queues, etc.) and other stuff.
● Implementations: Concrete classes you can use.

Today, we’ll learn the basic ideas behind the TreeSet and TreeMap.

Collection

List Set Map

ArrayList
Linked
List

TreeSetHashSet TreeMapHashMap

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• Insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation Tips

Binary Search
Trees: Derivation
Lecture 16, CS61B, Spring 2024

Analysis of an OrderedLinkedListSet<Character>

In an earlier lecture, we implemented a set based on unordered arrays. For the
order linked list set implementation below, name an operation that takes worst
case linear time, i.e. Θ(N).

size contains add iterator

A CB D E F G
sent

7

size

https://docs.google.com/presentation/d/1uItKUU8BDI8qSh_T8EO_0DWO34rKJtiO9nuoIj_VduE/edit#slide=id.g4eca586dfd_0_70

Analysis of an OrderedLinkedListSet<Character>

In an earlier lecture, we implemented a set based on unordered arrays. For the
order linked list set implementation below, name an operation that takes worst
case linear time, i.e. Θ(N).

size contains add iterator

A CB D E F G
sent

7

size

https://docs.google.com/presentation/d/1uItKUU8BDI8qSh_T8EO_0DWO34rKJtiO9nuoIj_VduE/edit#slide=id.g4eca586dfd_0_70

Optimization: Extra Links

Fundamental Problem: Slow search, even though it’s in order.

A CB D E F G

● Add (random) express lanes. Skip List (won’t discuss in 61B)

http://en.wikipedia.org/wiki/Skip_list

Optimization: Change the Entry Point

Fundamental Problem: Slow search, even though it’s in order.
● Move pointer to middle.

A CB D E F G

Optimization: Change the Entry Point, Flip Links

Fundamental Problem: Slow search, even though it’s in order.
● Move pointer to middle and flip left links. Halved search time!

A CB D E F G

Optimization: Change the Entry Point, Flip Links

Fundamental Problem: Slow search, even though it’s in order.
● How do we do even better?
● Dream big!

A CB D E F G

Optimization: Change Entry Point, Flip Links, Allow Big Jumps

Fundamental Problem: Slow search, even though it’s in order.
● How do we do better?

A CB D E F G

A C

B

D

E

F

G

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• Insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation Tips

Binary Search
Trees: Definition
Lecture 16, CS61B, Spring 2024

Tree

A tree consists of:
● A set of nodes.
● A set of edges that connect those nodes.

○ Constraint: There is exactly one path between any two nodes.

Green structures below are trees. Pink ones are not.

Rooted Trees and Rooted Binary Trees

A

In a rooted tree, we call one node the root.
● Every node N except the root has exactly one parent, defined as the first node

on the path from N to the root.
● Unlike (most) real trees, the root is usually depicted at the top of the tree.
● A node with no child is called a leaf.

In a rooted binary tree, every node has either 0, 1, or 2 children (subtrees).

B

C

A

B

C

A

C C

B
For each of these:
● A is the root.
● B is a child of A. (and C of B)
● A is a parent of B. (and B of C) Not binary!

https://www.amusingplanet.com/2010/12/baobab-upside-down-tree.html

Binary Search Trees

A binary search tree is a rooted binary tree with the BST property.

BST Property. For every node X in the tree:
● Every key in the left subtree is less than X’s key.
● Every key in the right subtree is greater than X’s key.

dog

bag flat

alf cat elf glut

debt

bus ears

axe cow fish gut

Binary Tree, but not a Binary Search TreeBinary Search Tree

Binary Search Trees

Ordering must be complete, transitive, and antisymmetric. Given keys p and q:
● Exactly one of p ≺ q and q ≺ p are true.
● p ≺ q and q ≺ r imply p ≺ r.

One consequence of these rules: No duplicate keys allowed!
● Keeps things simple. Most real world implementations follow this rule.

dog

bag flat

alf cat elf glut

debt

bus ears

axe cow fish gut

Binary Tree, but not a Binary Search TreeBinary Search Tree

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• Insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation Tipscontains

Lecture 16, CS61B, Spring 2024

Finding a searchKey in a BST (come back to this for the BST lab)

If searchKey equals T.key, return.

● If searchKey ≺ T.key, search T.left.
● If searchKey ≻ T.key, search T.right.

dog

bag flat

alf cat elf glut

Finding a searchKey in a BST

If searchKey equals T.key, return.

● If searchKey ≺ T.key, search T.left.
● If searchKey ≻ T.key, search T.right.

static BST find(BST T, Key sk) {
 if (T == null)
 return null;
 if (sk.equals(T.key))
 return T;
 else if (sk ≺ T.key)
 return find(T.left, sk);
 else
 return find(T.right, sk);
}

dog

bag flat

alf cat elf glut

BST Search: http://yellkey.com/leave

What is the runtime to complete a search on a “bushy” BST in the worst case,
where N is the number of nodes.
A. Θ(log N)
B. Θ(N)
C. Θ(N log N)
D. Θ(N2)
E. Θ(2N)

“bushiness” is an intuitive concept
that we haven’t defined.

BST Search

What is the runtime to complete a search on a “bushy” BST in the worst case,
where N is the number of nodes.
A. Θ(log N)

Height of the tree is ~log2(N)

BSTs

Bushy BSTs are extremely fast.
● At 1 microsecond per operation, can find something from a tree of size

10300000 in one second.

Much (perhaps most?) computation is dedicated towards finding things in
response to queries.
● It’s a good thing that we can do such queries almost for free.

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation Tipsinsert

Lecture 16, CS61B, Spring 2024

Inserting a New Key into a BST

Search for key.
● If found, do nothing.
● If not found:

○ Create new node.
○ Set appropriate link.

Example:
insert “eyes”

dog

bag flat

alf cat elf glut

Inserting a New Key into a BST

Search for key.
● If found, do nothing.
● If not found:

○ Create new node.
○ Set appropriate link.

eyes

Arms length recursion: A common rookie bad
habit to avoid:

static BST insert(BST T, Key ik) {
 if (T == null)
 return new BST(ik);
 if (ik ≺ T.key)
 T.left = insert(T.left, ik);
 else if (ik ≻ T.key)
 T.right = insert(T.right, ik);
 return T;
}

 if (T.left == null)
 T.left = new BST(ik);
 else if (T.right == null)
 T.right = new BST(ik);

dog

bag flat

alf cat elf glut

Avoid Arms-Length Recursion

Better, but still not the best base case.
Avoid arms-length recursion!

if (T == null)
 return new BST(ik);

if (T.left == null)
 T.left = new BST(ik);
else if (T.right == null)
 T.right = new BST(ik);

The best base case.

if (T.left.left == null)
 T.left.left = new BST(ik);
else if (T.left.right == null)
 T.left.right = new BST(ik);
else if (T.right.left == null)
 T.right.left = new BST(ik);
else if (T.right.right == null)
 T.right.right = new BST(ik);

This base case is too complicated.
The recursion can take us further.

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• Insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation TipsHibbard deletion

Lecture 16, CS61B, Spring 2024

Deleting from a BST

3 Cases:
● Deletion key has no children.
● Deletion key has one child.
● Deletion key has two children.

eyes

dog

bag flat

alf cat elf glut

Case 1: Deleting from a BST: Key with no Children

Deletion key has no children (“glut”):
● Just sever the parent’s link.
● What happens to “glut” node?

eyes

dog

bag flat

alf cat elf glut

Case 1: Deleting from a BST: Key with no Children

Deletion key has no children (“glut”):
● Just sever the parent’s link.
● What happens to “glut” node?

○ Garbage collected.

eyes

dog

bag flat

alf cat elf glut

Case 2: Deleting from a BST: Key with one Child

Example: delete(“flat”):

Goal:
● Maintain BST property.
● Flat’s child definitely larger than dog.

○ Safe to just move that child into flat’s spot.

Thus: Move flat’s parent’s pointer to flat’s child.
eyes

dog

bag flat

alf cat elf

Case 2: Deleting from a BST: Key with one Child

Example: delete(“flat”):

Goal:
● Maintain BST property.
● Flat’s child definitely larger than dog.

○ Safe to just move that child into flat’s spot.

Thus: Move flat’s parent’s pointer to flat’s child.
● Flat will be garbage collected (along with its instance variables).

eyes

dog

bag flat

alf cat elf

Hard Challenge

Delete k.

e

b g

a d f

v

p y

m r x z

k

Case 3: Deleting from a BST: Deletion with two Children (Hibbard)

Example: delete(“dog”)

Goal:
● Find a new root node.
● Must be > than everything in left subtree.
● Must be < than everything right subtree.

Would bag work?
eyes

dog

bag flat

alf cat elf glut

Example: delete(“dog”)

Goal:
● Find a new root node.
● Must be > than everything in left subtree.
● Must be < than everything right subtree.

Choose either predecessor (“cat”) or successor (“elf”).
● Delete “cat” or “elf”, and stick new copy in the root position:

○ This deletion guaranteed to be either case 1 or 2. Why?
● This strategy is sometimes known as “Hibbard deletion”.

Case 3: Deleting from a BST: Deletion with two Children (Hibbard)

eyes

dog

bag flat

alf cat elf glut

Hard Challenge (Hopefully Now Easy)

Delete k.

e

b g

a d f

v

p y

m r x z

k

Hard Challenge (Hopefully Now Easy)

Delete k. Two solutions: Either promote g or m to be in the root.
● Below, solution for g is shown.

e

b g

a d f

v

p y

m r x z

k

Hard Challenge (Hopefully Now Easy)

Two solutions: Either promote g or m to be in the root.
● Below, solution for g is shown.

e

b

g

a d

f

v

p y

m r x z

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• Insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation Tips

Sets and Maps
(are the same
thing)
Lecture 16, CS61B, Spring 2024

Sets vs. Maps

Can think of the BST below as representing a Set:
● {mo, no, sumomo, uchi, momo}

sumomo

momo

mo no

uchi

sumomo

mo

momo

no

uchi

Sets vs. Maps

Can think of the BST below as representing a Set:
● {mo, no, sumomo, uchi, momo}

But what if we wanted to represent a mapping of word counts?

sumomo

momo

mo no

uchi

sumomo

mo

momo

no

uchi

sumomo 1

mo 2

momo 2

no 1

uchi 1

????

Sets vs. Maps

To represent maps, just have each BST node store key/value pairs.

Note: No efficient way to look up by value.
● Example: Cannot find all the keys with value = 1 without iterating over ALL

nodes. This is fine.

sumomo 1

momo 2

mo 2 no 1

uchi 1

sumomo 1

mo 2

momo 2

no 1

uchi 1

Summary

Abstract data types (ADTs) are defined in terms of operations, not implementation.

Several useful ADTs: Disjoint Sets, Map, Set, List.
● Java provides Map, Set, List interfaces, along with several implementations.

We’ve seen two ways to implement a Set (or Map): ArraySet and using a BST.
● ArraySet: Θ(N) operations in the worst case.
● BST: Θ(log N) operations in the worst case if tree is balanced.

BST Implementations:
● Search and insert are straightforward (but insert is a little tricky).
● Deletion is more challenging. Typical approach is “Hibbard deletion”.

Abstract Data Types
Binary Search Trees

• Derivation
• Definition
• contains
• Insert
• Hibbard deletion

Sets and Maps (are the same thing)
BST Implementation Tips

BST
Implementation
Tips
Lecture 16, CS61B, Spring 2024

static BST insert(BST T, Key ik) {
 if (T == null)
 return new BST(ik);
 if (ik ≺ T.label()))
 T.left = insert(T.left, ik);
 else if (ik ≻ T.label())
 T.right = insert(T.right, ik);
 return T;
}

Tips for BST Lab

● Code from class was “naked recursion”. Your BSTMap will not be.
● For each public method, e.g. put(K key, V value), create a private

recursive method, e.g. put(K key, V value, Node n)
● When inserting, always set left/right pointers, even if nothing is actually

changing.
● Avoid “arms length base cases”. Don’t check if left or right is null!

Always set, even if
nothing changes!

Avoid “arms length base cases”.

 if (T.left == null)
 T.left = new BST(ik);
 else if (T.right == null)
 T.right = new BST(ik);

