Select all statements that are true of the following method. *

3 points

```
public int orderMarugame(int n) {
    for (int i = 1; i < n; i *= 2) {
        System.out.println("another shrimp tempura, please!");
    }
    if (n % 2 == 0) {
        for (int i = 0; i < n; i++) {
            System.out.println("another sweet potato, please!");
        }
    }
}

The best case runtime is θ(n)

The worst case runtime is θ(n)

The function runs in θ(n)

The function runs in O(log n)</pre>
```

True or False: Increasing the max items per node in a B-Tree (L) strictly 1 point improves the runtime to find an element.

The function runs in $O(n^2)$

- True. As we increase the max items/node, the overall height will decrease. This decreases the worst case time it takes to travel from the root to a leaf node, so the time it takes to find any given element in the tree will decrease.
- False. As we increase the max items/node, the height may decrease but the time time it takes to linearly scan all items in a single node can increase. For a very high L, all of a user's elements might fit into a single node, in which case the runtime would be equivalent to scanning a list.

What does the following 2-3 Tree look like after we insert **22**? As a reminder, 2-3 trees can have a maximum of 2 items per node.

2 points

OPTION B

OPTION C

OPTION D

- Option A
- Option B
- Option C
- Option D

Which of the following are true invariants of B-Trees? * Select all that apply	2 points
All leaves must be the same distance from the root.	
The number of items on the left side of the root will always equal the number of items on the right.	
Adding an item to the tree will never increase the overall number of nodes in the tree.	
A non-leaf node with k items must have exactly k+1 children.	

A copy of your responses will be emailed to yiyunchen@berkeley.edu.

Submit

Clear form

This form was created inside of UC Berkeley. Report Abuse

Google Forms