Given the state of the hash table below, select which bucket each item * 4 points would go into AFTER calling add(4). Assuming we double the bucket size if N/M > 0.75.

	0	1	2	3	4	5	6	7
8	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0

Select all of the statements below that correctly describe how the factor * 3 points contributes to the asymptotic analysis of the hash tables shown in lecture.
Number of buckets (M): If M is fixed, then the performance of "add" and "contains" will approach linear as N approaches infinity.
Number of buckets (M): If M is dynamic, then the performance of "add" and "contains" will have constant or amortized constant time as N approaches infinity.
Hash function: If the hash function distributes the items evenly, then the performance of "add" and "contains" will have constant or amortized constant time.
Hash function: If the hash function doesn't distribute the items evenly, then the performance of "add" and "contains" will not have constant or amortized constant time.

A copy of your responses will be emailed to yiyunchen@berkeley.edu.

Submit

Clear form

This form was created inside of UC Berkeley. Report Abuse

Google Forms