
Hash Tables
Lecture 19

1

CS61B, Spring 2024 @ UC Berkeley
Slides Credit: Josh Hug

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

Motivation, Set
Implementations
Lecture 19, CS61B, Spring 2024

Sets

We’ve now seen several implementations of the Set (or Map) ADT.

Set

ArraySet BST 2-3 Tree LLRB

Map

contains(x) add(x) Notes

ArraySet Θ(N) Θ(N)

BST Θ(N) Θ(N) Random trees are Θ(log N).

2-3 Tree Θ(log N) Θ(log N) Beautiful idea. Very hard to implement.

LLRB Θ(log N) Θ(log N) Maintains bijection with 2-3 tree. Hard to implement.

Worst case runtimes

Limits of Search Tree Based Sets

Our search tree based sets require items to be comparable.
● Need to be able to ask “is X < Y?” Not true of all types (ex. How do you

compare 苹 and 橙?).
● Could we somehow avoid the need for objects to be comparable?

Our search tree sets have excellent performance, but could maybe be better?
● Θ(log N) is amazing. 1 billion items is still only height ~30.
● Could we somehow do better than Θ(log N)?

Today we’ll see the answer to both of the questions above is yes.

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

WriteItOnTheWallSet
Lecture 19, CS61B, Spring 2024

Data Structures tend to be analogous to real-life things, so it's often useful to try
playing the role of a data structure as a human (to get ideas on how they work)
Let's think about a simplified Set of Integers, which requires these two operations:
● Add: Adds a new item to the Set

○ Assumption for now: We never try to add something already in the Set
■ Can make this assumption because we can call Contains before

adding.
● Contains: Checks if a given number is in the set.

Our goal is to make these operations as fast as possible.

Data Structures Reflect Real Life

Let's introduce a human implementation of Set: WriteItOnTheWall Set
We will have a wall, and a pencil.
● Add: Write the number at a random place on the wall

○ If the wall is full, get a bigger wall (we saw from ArrayList that this can be
done in constant time amortized, so we can ignore this safely)

● Contains: Look for our number on the wall. If we find it, return true. Otherwise
return false

Strongly analogous to an "ArraySet"
Two questions:
● Is it fast to add?
● Is it fast to contains?

WriteItOnTheWallSet

Is it fast to add: Adding "5" to a wall of 10 numbers

212 131
759 281

670
953 984 104

958 526

Is it fast to add: Adding "5" to a wall of 10 numbers

212 131
759 281

670
953 984 5 104

958 526

Is it fast to add: Adding "5" to a wall of 100 numbers

281 953 104 958 212 131 984 670 759 526

161 560 815 289 462 591 828 981 603 922

175 455 286 605 543 375 669 970 651 65

995 13 916 616 721 913 872 881 22 830

584 137 228 86 861 109 821 253 305 530

317 340 494 719 737 677 786 672 216 702

35 770 480 557 74 52 632 765 753 73

194 77 226 764 173 979 454 106 967 551

556 644 739 547 973 796 525 573 920 28

290 708 298 56 288 891 867 579 417

Is it fast to add: Adding "5" to a wall of 100 numbers

281 953 104 958 212 131 984 670 759 526

161 560 815 289 462 591 828 981 603 922

175 455 286 605 543 375 669 970 651 65

995 13 916 616 721 913 872 881 22 830

584 137 228 86 861 109 821 253 305 530

317 340 494 719 737 677 786 672 216 702

35 770 480 557 74 52 632 765 753 73

194 77 226 764 173 979 454 106 967 551

556 644 739 547 973 796 525 573 920 28

290 708 298 56 288 891 867 579 417 5

Is it fast to contains: Search for "439" on a wall of 10 numbers

212 131
759 281

670
953 984 104

958 526

Is it fast to contains: Search for "605" on a wall of 100 numbers

281 953 104 958 212 131 984 670 759 526

161 560 815 289 462 591 828 981 603 922

175 455 286 605 543 375 669 970 651 65

995 13 916 616 721 913 872 881 22 830

584 137 228 86 861 109 821 253 305 530

317 340 494 719 737 677 786 672 216 702

35 770 480 557 74 52 632 765 753 73

194 77 226 764 173 979 454 106 967 551

556 644 739 547 973 796 525 573 920 28

290 708 298 56 288 891 867 579 417 5

Is it fast to contains: Search for "605" on a wall of 100 numbers

281 953 104 958 212 131 984 670 759 526

161 560 815 289 462 591 828 981 603 922

175 455 286 605 543 375 669 970 651 65

995 13 916 616 721 913 872 881 22 830

584 137 228 86 861 109 821 253 305 530

317 340 494 719 737 677 786 672 216 702

35 770 480 557 74 52 632 765 753 73

194 77 226 764 173 979 454 106 967 551

556 644 739 547 973 796 525 573 920 28

290 708 298 56 288 891 867 579 417 5

Is it fast to contains: Search for "白" and "黒" on a wall of 1000 Kanji

須献資竹奈正賓方富秩苗移辞斤灯情腹縄典械迄淵執伐速寛藻具彰嗣謙役傾嘘於柵企娯李燃複主賂院雅設祥
憾貌溝庁傲霊号酔旬停冖剤寡墳称遺原貧癶頻甲逮幕徒耂私素片署弧落兵坪感所農腐論眼式齢孝角略宛郎森
好価認宅壁洲拐志反渋睡菓紋針縮銅蜂捨廾探確拷率夬干堂窃林鋭屮翔愚賀革月懸挑哀凵拙寝蒲以窟拒数骸
頓障豕惨除体帽屏唄且狙伺膨製査用挨石釈雌投預爽繰品暑圏眺滴轄庭怠筒絞幌完築年憎莫高核煙机漬胎般
擬岬販華斉遂晩社乃鈍鹿征傷縫苑沈獲重髄酌負党陸誠伊棟晶沼脱炎惚佐弊漠妖宿貿帥柴賦審飠緊散旺塊餅
刺左後騰戯攵抗胸吊週症吟丸縁紳拳昇閲境披甫妨余錬謡厚井二痛渡匂白入盲淑廊攻萌蘇検使平鍛徹薪怒現
笛腕賜康許舎押手矢霧悟連荘乏拠浩瓶遮員拶朱零濁辶成君囚鮮侮書柳貸鑑火恋悔朔樹偵求服廷謝尹泰坊贈
去貴次救量剰慨逸制作哲駆裾血悠曹罒展対無迷福遊殊語俳端云外詩逆士忍避拭放得礁脈彑斜性飛婿底牲油
職汽鬼弘隻導局惰将束粘毎妥観神妬加慮腺訟諸残痢必熊侯相根壱訴胡郷慢都系第向勧光著秀喩挿筆擦益肥
籍履循勝溶析就巨渚蜜依塔咲溺席含拝慶案返揺礎紙望囗赴雑畏惧盛徐協旗爪競澄倣宜心泥止誓嚇育羅冫鼻
匕吐皇到穴庄頼堀滅豆篤裏河棺甘紀省虜醸労恒把浜侍途距足迅辣呪憂亭免控還暁子恵日矛描疒互右排駒盗
程玄拘畿虐咽人稼軽満営応閑聴道枢文混拾由国柔箇鉱隆別丁襲邦紫灬枠肺器勉乳菊税口整繕状呂玉恭液我
塩窯仁磯脅復嘱侵悲袋親捉計杯孟磨辛挙裸胃能刷柏他誘驚那粉灰雨巣央表泡沿姻腫扉藩妻掛褐可栽藍湯叶
危息殺与演弦掃橋夏当景怪合覇癖裂釜頃衤也射紡懇通彦疫崇彡層集賠換適吹忙仙漂読栓薬抜隈癒同花臨否
線寄常紅蒼出箸町凝苛編恨公裁瑠欲羊刂派奪報瘍廴画或時穫色伯効討併改腸木麓秘喚宝視汚死顧漫髪保威
議喪戸一然引幸摩監斐単雇羨冶汎哉脊間股評訓縦祖領待星倫腰宙柱東登弟英貝矯暇痩章医前況達治其削蚊
卓陽司洋鯉凸膚句奔頂元衰殻津解建乞幣男鬱戻琴宀下毛巾忄斥斎装謂附竜兼創熟翁添繁発憧岡露殳凹説歓
嫁存眠迎玩県克管悼幽艇漱決違触衆為厳理璃稽請列膝航倒条校帆屯俵棄冥亦刑組村蘭鼓門脂卵刈昆奥敷父
吉丑欄塞禍低傘僅要這精飼較慌洪翌多輩追婦持鐘経漆衣難型敬母鋼渇肖猛峡俺振茨遥夕冗舛糧叔州屋覚隔
誕抵犠穀隶弁損係活臓娘綱姉抑区利叱陰部叩傍亜伎両版韋夢衡基美曽民焦滑阜肪蔑記安概付湾円艦舌訂務
容卜瞭契注亻芽懲優操賞唐野暫飲筈銘静酵牧扱雀調流飢冒覧予尻馴喝弄粧雷質踊便嫡慈悩褒冠棒殿着笠剛
旦芋啓供警毒歩健塁証是浦

Is it fast to contains: Search for "白" and "黒" on a wall of 1000 Kanji

須献資竹奈正賓方富秩苗移辞斤灯情腹縄典械迄淵執伐速寛藻具彰嗣謙役傾嘘於柵企娯李燃複主賂院雅設祥
憾貌溝庁傲霊号酔旬停冖剤寡墳称遺原貧癶頻甲逮幕徒耂私素片署弧落兵坪感所農腐論眼式齢孝角略宛郎森
好価認宅壁洲拐志反渋睡菓紋針縮銅蜂捨廾探確拷率夬干堂窃林鋭屮翔愚賀革月懸挑哀凵拙寝蒲以窟拒数骸
頓障豕惨除体帽屏唄且狙伺膨製査用挨石釈雌投預爽繰品暑圏眺滴轄庭怠筒絞幌完築年憎莫高核煙机漬胎般
擬岬販華斉遂晩社乃鈍鹿征傷縫苑沈獲重髄酌負党陸誠伊棟晶沼脱炎惚佐弊漠妖宿貿帥柴賦審飠緊散旺塊餅
刺左後騰戯攵抗胸吊週症吟丸縁紳拳昇閲境披甫妨余錬謡厚井二痛渡匂 白入盲淑廊攻萌蘇検使平鍛徹薪怒現
笛腕賜康許舎押手矢霧悟連荘乏拠浩瓶遮員拶朱零濁辶成君囚鮮侮書柳貸鑑火恋悔朔樹偵求服廷謝尹泰坊贈
去貴次救量剰慨逸制作哲駆裾血悠曹罒展対無迷福遊殊語俳端云外詩逆士忍避拭放得礁脈彑斜性飛婿底牲油
職汽鬼弘隻導局惰将束粘毎妥観神妬加慮腺訟諸残痢必熊侯相根壱訴胡郷慢都系第向勧光著秀喩挿筆擦益肥
籍履循勝溶析就巨渚蜜依塔咲溺席含拝慶案返揺礎紙望囗赴雑畏惧盛徐協旗爪競澄倣宜心泥止誓嚇育羅冫鼻
匕吐皇到穴庄頼堀滅豆篤裏河棺甘紀省虜醸労恒把浜侍途距足迅辣呪憂亭免控還暁子恵日矛描疒互右排駒盗
程玄拘畿虐咽人稼軽満営応閑聴道枢文混拾由国柔箇鉱隆別丁襲邦紫灬枠肺器勉乳菊税口整繕状呂玉恭液我
塩窯仁磯脅復嘱侵悲袋親捉計杯孟磨辛挙裸胃能刷柏他誘驚那粉灰雨巣央表泡沿姻腫扉藩妻掛褐可栽藍湯叶
危息殺与演弦掃橋夏当景怪合覇癖裂釜頃衤也射紡懇通彦疫崇彡層集賠換適吹忙仙漂読栓薬抜隈癒同花臨否
線寄常紅蒼出箸町凝苛編恨公裁瑠欲羊刂派奪報瘍廴画或時穫色伯効討併改腸木麓秘喚宝視汚死顧漫髪保威
議喪戸一然引幸摩監斐単雇羨冶汎哉脊間股評訓縦祖領待星倫腰宙柱東登弟英貝矯暇痩章医前況達治其削蚊
卓陽司洋鯉凸膚句奔頂元衰殻津解建乞幣男鬱戻琴宀下毛巾忄斥斎装謂附竜兼創熟翁添繁発憧岡露殳凹説歓
嫁存眠迎玩県克管悼幽艇漱決違触衆為厳理璃稽請列膝航倒条校帆屯俵棄冥亦刑組村蘭鼓門脂卵刈昆奥敷父
吉丑欄塞禍低傘僅要這精飼較慌洪翌多輩追婦持鐘経漆衣難型敬母鋼渇肖猛峡俺振茨遥夕冗舛糧叔州屋覚隔
誕抵犠穀隶弁損係活臓娘綱姉抑区利叱陰部叩傍亜伎両版韋夢衡基美曽民焦滑阜肪蔑記安概付湾円艦舌訂務
容卜瞭契注亻芽懲優操賞唐野暫飲筈銘静酵牧扱雀調流飢冒覧予尻馴喝弄粧雷質踊便嫡慈悩褒冠棒殿着笠剛
旦芋啓供警毒歩健塁証是浦

WriteItOnTheWallSet had fast adds (Θ(1)), but slow contains (Θ(N), where N is the
number of elements)
● Good thing: It didn't matter what type the items were; it worked as well with

ints as it did with Kanji
How can we make this faster?
● Sort the data?

○ Makes contains faster, but add slower (since we need to rewrite
everything)

○ Doesn't work on Kanji
○ Optimizations to this leads to the TreeSet approach discussed earlier and

log(N) runtime
● Categorize the data?

○ How do we do that? Get boba.

WriteItOnTheWallSet

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

BobaCounterSet
Lecture 19, CS61B, Spring 2024

TPT has this interesting device to
help organize their boba
● When you order boba, you get

an order number
● Once the boba is made, your

boba gets placed on the
counter for pickup

● Often 5-10 boba on the
counter at a time, so to avoid
customers searching for their
boba, so they place the boba
in the slot corresponding to
the last digit of your order
number

● Fast to add, fast to find

When stuck on a hard problem, get boba

Let's try to formalize this with a BobaCounter Set
We will have a wall split into 10 "bins", and a pencil.
● Add: Write the number to the place on the wall corresponding to the last digit

of the number
○ Ex. "193" goes in the 3 segment, "100" goes in the 0 segment
○ If the wall is full, get a bigger wall (we saw from ArrayList that this can be

done in constant time amortized, so we can ignore this safely)
● Contains: Look for our number on the wall in the bin corresponding to our last

digit. If we find it, return true. Otherwise return false
Two questions:
● Is it fast to add?
● Is it fast to contains?

BobaCounterSet

Is it fast to add: Adding "5" to a wall of 100 numbers

560 920 161 131 212 922 603 73 194 644

670 830 281 651 22 672 953 753 104 984

530 770 591 981 462 702 13 253 764 494

970 290 721 891 52 632 173 973 584 74

480 340 551 821 872 573 913 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

815 175 526 616 417 867 958 289 759

605 455 106 286 317 547

525 916 56

Is it fast to add: Adding "5" to a wall of 100 numbers

560 920 161 131 212 922 603 73 194 644

670 830 281 651 22 672 953 753 104 984

530 770 591 981 462 702 13 253 764 494

970 290 721 891 52 632 173 973 584 74

480 340 551 821 872 573 913 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

815 175 526 616 417 867 958 289 759

605 455 106 286 317 547

525 5 916 56

Is it fast to contains: Search for "605" on a wall of 100 numbers

560 920 161 131 212 922 603 73 194 644

670 830 281 651 22 672 953 753 104 984

530 770 591 981 462 702 13 253 764 494

970 290 721 891 52 632 173 973 584 74

480 340 551 821 872 573 913 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

815 175 526 616 417 867 958 289 759

605 455 106 286 317 547

525 5 916 56

Is it fast to contains: Search for "605" on a wall of 100 numbers

560 920 161 131 212 922 603 73 194 644

670 830 281 651 22 672 953 753 104 984

530 770 591 981 462 702 13 253 764 494

970 290 721 891 52 632 173 973 584 74

480 340 551 821 872 573 913 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

815 175 526 616 417 867 958 289 759

605 455 106 286 317 547

525 5 916 56

BobaCounterSet still has equally fast adds, and contains is now only as slow as
the wall segment with the most elements
● If the numbers are random, runtime is reduced by a factor of 10

Any problems with this approach?
● Since we split the wall into 10 bins, we have more wasted space. How to

minimize that?
● What do we do when the number of elements gets so large that even one bin

has 1000 items?
● What happens if the numbers aren't random (e.g. most numbers end in a 0)?
● What if we want to deal with things that aren't numbers, like Kanji?

BobaCounterSet

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

DynamicArrayOf
ListsSet
Lecture 19, CS61B, Spring 2024

Instead of assigning the same amount of wall space per section, dynamically
increase the size of each section as items get added there
Easiest solution here is to use Linked Lists
● Other solutions exist, but we'll focus on the Linked List approach for this class
● We still use one unit of wasted space per empty section (e.g. if 0 had no

elements)
○ But overall, this uses less memory than before

How to minimize wasted space?

0
1
2
3
4
5
6
7
8
9

3 13
4
5
6
7
8
9

10
11
12

14
15

Let N = number of items in all bins, M = number of bins
If we assume that values are evenly distributed, each bin has about N/M items
So contains runs in Θ(N/M) time.
If M is constant, that reduces to Θ(N).
● Solution: Have M grow with N so that each bucket has on average a constant

number of elements.
● Needs a way to categorize numbers into M groups

for arbitrary M: "last digit" only works with M=10.
Is there a common mathematical function that generalizes
"last digit"?

How to handle large numbers of items?

0
1
2
3
4
5
6
7
8
9

3 13
4
5
6
7
8
9

10
11
12

14
15

Reduction Functions

Easiest solution is the "modulus" operator.
● Can apply to any value of M
● Evenly distributes randomly-generated numbers
● Relatively prime moduli are statistically independent
● Multiplying M by an integer splits each bin into smaller bins independently

Other reductions are possible, e.g. number of digits. But modulus is the most natural and
best reduction function.

0
1
2
3
4
5
6
7
8
9

88

0 10

3719

1034854400

% 10 0

reduce index 4178

44

9

1034854400

Each integer gets reduced into
an index.

Increasing M

To keep constant time contains, we need N/M to stay less than some constant k.
Two approaches:
● Increase M when the largest bin exceeds k.

○ Generally leads to a lot of empty bins, so not used.
● Increase M when the average bin size exceeds k.

0
1
2
3
4
5
6
7
8
9

88

0 10

3719

1034854400

% 10 0

reduce index 4178

44

9

1034854400

Each integer gets reduced into
an index.

Increasing M

How much to increase M?
● When we increase M, we'll have to reassign every number to a new box, which will take

Θ(N) time during that add operation
● Our goal is to have Θ(1) amortized runtime, and we've seen from ArrayLists that we can

get that as long as we do Θ(N) steps rarely enough
● Therefore, M should double every time we resize

0
1
2
3
4
5
6
7
8
9

88

0 10

3719

1034854400

% 10 0

reduce index 4178

44

9

1034854400

Each integer gets reduced into
an index.

Hash Table Resizing Example

Suppose we set a rule that when N/M is ≥ 1.5, we double M.

0

1

2

3

N = 0 M = 4 N / M = 0

Hash Table Resizing Example

0

1

2

3

N = 1 M = 4 N / M = 0.25

Suppose we set a rule that when N/M is ≥ 1.5, we double M.
● add(7)

7

Hash Table Resizing Example

0

1

2

3

N = 2 M = 4 N / M = 0.5

Suppose we set a rule that when N/M is ≥ 1.5, we double M.
● add(7), add(16)

7

16

Hash Table Resizing Example

0

1

2

3

N = 3 M = 4 N / M = 0.75

Suppose we set a rule that when N/M is ≥ 1.5, we double M.
● add(7), add(16), add(3)

7

16

3

Hash Table Resizing Example

0

1

2

3

N = 4 M = 4 N / M = 1

Suppose we set a rule that when N/M is ≥ 1.5, we double M.
● add(7), add(16), add(3), add(11)

7

16

3 11

Hash Table Resizing Example

0

1

2

3

N = 5 M = 4 N / M = 1.25

Suppose we set a rule that when N/M is ≥ 1.5, we double M.
● add(7), add(16), add(3), add(11), add(20)

7

16

3 11

20

Hash Table Resizing Example

0

1

2

3

N = 6 M = 4 N / M = 1.5

N/M is too large.
Time to double!

Suppose we set a rule that when N/M is ≥ 1.5, we double M.
● add(7), add(16), add(3), add(11), add(20), add(13). Resize triggered.

7

16

3 11

20

13

Hash Table Resizing Example

When N/M is ≥ 1.5, then double M.
● Draw the results after doubling M.

0

1

2

3

N = 6 M = 4 N / M = 1.5

N/M is too large.
Time to double!

?

?

?

0

1

2

3

4

5

6

7

?

?

?

?

?

7

16

11

20

13

3

Hash Table Resizing Example

When N/M is ≥ 1.5, then double M.
● Draw the results after doubling M.

0

1

2

3

N = 6 M = 4 N / M = 1.5

N/M is too large.
Time to double!

0

1

2

3

4

5

6

7

N = 6 M = 8 N / M = 0.75

7

16

11

20

13

3

16

3 11

20

13

7

DynamicArrayOfListsSet

The data structure we just built might be called a DynamicArrayOfListsSet.
● Not as intuitive as our original idea, but the core idea stayed the same

If we have N items that are evenly distributed, length of each list is ~N/M.
● N/M is constant asymptotically.
● So operations are constant on average.

We’ll think more carefully about runtime later.

1034854400

% 6 2

reduce index

0
1
2
3
4
5

146

0 6

2133

DynamicArrayOfListsSet

103485440

46
9

Each integer gets reduced into
an index.

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

lowercase strings
Lecture 19, CS61B, Spring 2024

Goal: Storing Strings

The data structure we have so far is great for storing integers.
● Let’s try to figure out how to store Strings of lowercase characters.

Storing the Word cat

Suppose we want to add(“cat”)

The key question:
● Which bucket do we put “cat” in?
● One idea: Use the order in the alphabet of the first letter as the list number.

○ a = 0, b = 1, c = 2, …, z = 25
○ So cat would go in bucket 2.
○ Forces us to start with 26 buckets

What about after resize?
● After the first resize, look at the first two letters

○ aa = 0, ab = 1, ac = 2, …, zz = 675
○ cat would go in bucket 52.

What are some issues with this approach?

Storing the Word cat (your answer)

Suppose we want to add(“cat”)

The key question:
● Which bucket do we put “cat” in?
● One idea: Use the order in the alphabet of the first letter as the list number.

○ a = 0, b = 1, c = 2, …, z = 25
○ So cat would go in bucket 2.

● After the first resize, look at the first two letters, then first three, and so on

What are some issues with this approach?
● Not a random distribution of letters
● Single-letter "a" can't be placed after resize -> extends as resizes grow
●

Storing the Word cat (my answer)

Suppose we want to add(“cat”)

The key question:
● Which bucket do we put “cat” in?
● One idea: Use the order in the alphabet of the first letter as the list number.

○ a = 0, b = 1, c = 2, …, z = 25
○ So cat would go in bucket 2.

● After the first resize, look at the first two letters, then first three, and so on

What are some issues with this approach?
● Where to put short strings (e.g. "a") after resize? (can probably fix)
● It feels wrong for Strings to force our Set to resize to 26, 676, etc. buckets,

when ints allowed for any number of buckets. (CRITICAL)
○ Are we going to have to define a new resize for every type of object???

Design Philosophy: Stringy stuff should be done in the String class

The big problem with the previous approach was that Set was responsible for
figuring out how to categorize Strings
● That shouldn't be the Set's job, since otherwise Set would have to know about

every single Object in existence (including ones that aren't built yet), and how
to categorize them

At the same time, String shouldn't be able to dictate when Set decides to resize
● With ints, Set could decide the M/N threshold and bin multiplier, so Set could

decide which values made the most sense (given memory/time constraints).
Solution: Set was most flexible when working on ints, so make it so that Set only
works on ints.
Define a method f (in String) to convert Strings into an int, and store String s in the
bin corresponding to f(s).
● String gets to decide how it wants to be categorized, Set gets to decide when

it wants to resize.

Finding a Way to Store the Word cat

Suppose we want to add(“cat”)

The key question:
● How do I convert “cat” into a number?

What is another idea? Assume for now we’re dealing with only lower case letters in
English.

Finding a Way to Store the Word cat (Your Answer)

Suppose we want to add(“cat”)

The key question:
● How do I convert “cat” into a number?

What is another idea? Assume for now we’re dealing with only lower case letters in
English.
● Sum up each letter
● ASCII/Unicode
● Base 26
● Number of characters

Finding a Way to Store the Word cat (My Answer)

Suppose we want to add(“cat”)

The key question:
● How do I convert “cat” into a number?

What is another idea? Assume for now we’re dealing with only lower case letters in
English.
● Ideally we should evenly distribute Strings; we don't want any int to have

significantly more associated strings than average.
● Treat cat as a base 26 number.

Treating cat as a Base 26 Number

Use all digits by multiplying each by a power of 26.
● a = 1, b = 2, c = 3, …, z = 26
● Thus the index of “cat” is (3 x 262) + (1 x 261) + (20 x 260) =

2074.

Why this specific pattern?
● Let’s review how numbers are represented in decimal.

The Decimal Number System vs. My System for Strings

In the decimal number system, we have 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Want numbers larger than 9? Use a sequence of digits.

Example: 7091 in base 10

● 709110 = (7 x 103) + (0 x 102) + (9 x 101) + (1 x 100)

Our system for strings is almost the same, but with letters.
● One difference: In decimal numbers, 000 is the same as 0, but with strings

aaa is different from a.
● To deal with this, we just don’t have a 0 in our system, i.e. a is 1, not 0.

Test Your Understanding

Convert the word “bee” into a number by using our “powers of 26” strategy.

Reminder: cat26 = (3 x 262) + (1 x 261) + (20 x 260) = 207410

Hint: ‘b’ is letter 2, and ‘e’ is letter 5.

Test Your Understanding

Convert the word “bee” into a number by using our “powers of 26” strategy.

Reminder: cat26 = (3 x 262) + (1 x 261) + (20 x 260) = 207410

Hint: ‘b’ is letter 2, and ‘e’ is letter 5.

● bee26 = (2 x 262) + (5 x 261) + (5 x 260) = 148710

Uniqueness

● cat26 = (3 x 262) + (1 x 261) + (20 x 260) = 207410
● bee26 = (2 x 262) + (5 x 261) + (5 x 260) = 148710

As long as we pick a base ≥ 26, this algorithm is guaranteed to give each
lowercase English word a unique number!
● Using base 26, no other words will get the number 1487.

The Hash Table

We’ve now extended our DynamicArrayOfLinkedLists to handle strings.
● Data is converted by a integerization function into an integer representation.
● The integer is then reduced to a valid index, usually using the modulus

operator, e.g. 2348762878 % 10 = 8.

0
1
2
3
4
5
6

cats

map go

fish

cat lowerCaseToInt 2074

% 7 1

data integer
Integerization

Function

reduce index DynamicArrayOfLinkedLists

horse

cat

ball

sad

Implementing englishToInt (optional)

Optional exercise: Try to write a function englishToInt that can convert English
strings to integers by adding characters scaled by powers of 26.

Examples:
● a: 1
● z: 26
● aa: 27
● bee: 1487
● cat: 2074
● dog: ??
● potato: ??

Implementing englishToInt (optional) (solution)

/** Converts ith character of String to a letter number.
 * e.g. 'a' -> 1, 'b' -> 2, 'z' -> 26 */
public static int letterNum(String s, int i) {

int ithChar = s.charAt(i);
if ((ithChar < 'a') || (ithChar > 'z'))

 { throw new IllegalArgumentException(); }
return ithChar - 'a' + 1;

}

public static int englishToInt(String s) {
int intRep = 0;
for (int i = 0; i < s.length(); i += 1) {

 intRep = intRep * 26;
 intRep = intRep + letterNum(s, i);

}
return intRep;

}

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

Integer Overflow
Lecture 19, CS61B, Spring 2024

DataIndexedStringSet

Using only lowercase English characters is too restrictive.
● What if we want to store strings like “2pac” or “eGg!”?

Suppose we wanted a unique integer for each possible such string.
● Need to assign an integer to all possible characters, e.g. what integer goes

with !

Someone has already done this.
● Let’s first discuss briefly discuss the ASCII standard.

ASCII Characters

The most basic character set used by most computers is ASCII format.
● Each possible character is assigned a value between 0 and 127.
● Characters 33 - 126 are “printable”, and are shown below.
● For example, char c = ’D’ is equivalent to char c = 68.

biggest value is 126

DataIndexedStringSet

Maximum possible value for english-only text including punctuation is 126, so can
use 126 as our base in order to ensure unique values for all possible strings.

Examples:
● bee126= (98 x 1262) + (101 x 1261) + (101 x 1260) = 1,568,675
● 2pac126 = (50 x 1263) + (112 x 1262) + (97 x 1261) + (99 x 1260)

 =101,809,233
● eGg!126 = (98 x 1263) + (71 x 1262) + (98 x 1261) + (33 x 1260)

 = 203,178,213

Implementing asciiToInt

Below is a simple formula which converts a String to an integer.
● Treats String as a base 126 number.

What if we want to use characters beyond ASCII?

public static int asciiToInt(String s) {
int intRep = 0;
for (int i = 0; i < s.length(); i += 1) {

 intRep = intRep * 126;
 intRep = intRep + s.charAt(i);

}
return intRep;

}

Going Beyond ASCII

chars in Java also support character sets for other languages and symbols.
● char c = ’☂’ is equivalent to char c = 9730.
● char c = ’鳌’ is equivalent to char c = 40140.
● char c = ’혜’ is equivalent to char c = 54812.
● This encoding is known as Unicode. Table is too big to list.

Example: Computing Unique Representations of Kanji

The largest possible value for Kanji is 40,959*, so we’d need to use this as our
base if we want to have a unique representation for all possible strings of Kanji.

Example:

● 横田誠司40959 = (27178 x 409593) + (30000 x 409592) + (35488
x 409591) + (21496 x 409590) =
1,867,571,481,361,683,550

横田誠号
横田誠司
横田誠叹

1,867,571,481,361,683,549
1,867,571,481,361,683,550
1,867,571,481,361,683,551

...

...

*If you’re curious, the last character is:

...

...

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

Hash Codes
Lecture 19, CS61B, Spring 2024

Finitely Many Integers

So far, we’ve tried to map any possible string to a unique integer.
● But in Java, there are only finitely many integers.

That is, we tried to map 横田誠司 as a base 40959 number, yielding
1,867,571,481,361,683,550, but this number doesn’t exist in Java as an int.
● Integer value grows exponentially with number of characters. Even limiting to　

haiku, we'll get numbers in the quinvigintillions.

Note: Other programming languages do not have finitely many integers. Python,
for example, allows an integer to take on any value.
● On actual physical computers, some integers will not be able to be stored.
● Even when stored, large numbers tend to take much more time to do math on.

What Happens in Practice: Integer Overflow

In Java, the largest possible integer is 2,147,483,647.
● If you go over this limit, you overflow, starting back over at the smallest

integer, which is -2,147,483,648.
● In other words, the next number after 2,147,483,647 is -2,147,483,648.

int x = 2147483647;
System.out.println(x);
System.out.println(x + 1);

jug ~/Dropbox/61b/lec/hashing
$ javac BiggestPlusOne.java
$ java BiggestPlusOne
2147483647
-2147483648

Consequence of Overflow

Because Java has a maximum integer, we won’t get the numbers we expect!
● With base 126, we will run into overflow even for short strings.

○ Example: omens126= 28,196,917,171, which is much greater than
the maximum integer!

○ asciiToInt(’omens’) will give us -1,867,853,901 in Java.

Hash Codes

The official term for the number we’re computing is “hash code”.
● Via Wolfram Alpha: a hash code “projects a value from a set with many (or

even an infinite number of) members to a value from a set with a fixed
number of (fewer) members.”

● Here, our target set is the set of Java integers, which is of size 4,294,967,296.

That is, our integerization function is a “hash code” because the set we’re
projected onto is fixed.

http://mathworld.wolfram.com/HashFunction.html

Java Uses Base 31

Because the range of our hashCode is finite, it is impossible to pursue unique
factorizations for each String.

Instead of base 40,959 or something larger, Java uses 31.
● Fixed mod prevents the issue of having different mods for different Strings
● 横田誠司40959 = (27178 x 409593) + (30000 x 409592) + (35488 x 409591) +

(21496 x 409590) = 1,867,571,481,361,683,550
● 横田誠司31 = (27178 x 313) + (30000 x 312) + (35488 x 311) + (21496 x 310) =

839,611,422

You can verify this by trying the code below in Java:
System.out.println("横田誠司".hashCode());

Java Uses Base 31

Because the range of our hashCode is finite, it is impossible to pursue unique
factorizations for each String.

Instead of base 40,959 or something larger, Java uses 31.
● 横田誠司31 = (27178 x 313) + (30000 x 312) + (35488 x 311) + (21496 x 310) =

839,611,422
Of course there are infinitely many other strings that also map to 839,611,422.
● Example: ±EreWn31= (177 x 315) + (69 x 314) + (114 x 313) + (101 x 312) + (87

x 311) + (110 x 310) = 5,134,578,718
● After overflow, 5,134,578,718 is just 839,611,422.

System.out.println("横田誠司".hashCode());
System.out.println("±EreWn".hashCode());

The Hash Table

What we’ve just created here is called a hash table.
● Data is converted by a hash function into an integer representation called a

hash code. Range of possible hash codes is -2,147,483,648 to 2,147,483,647.
● The hash code is then reduced to a valid index, usually using the modulus

operator, e.g. 2348762878 % 10 = 8.

0
1
2
3
4
5
6
7
8
9

bee

抱抱

están

抱抱 hashCode() 1034854400

% 10 0

data hash codehash function

reduce index

hash table

dog

الطبیعة

शानदार

포옹

In Java there’s a caveat
here. Will revisit later.

守门员

kao

peyrin

justin

yokota

横田誠司

The Hash Table

Note, there are other versions of hash tables out there.
● The version we’re using is an array of lists.
● This is sometimes called “separate chaining”, where each bucket is a

separate chain of items.
● Many more exotic solutions exist (linear probing, cuckoo hashing, using

things other than linked lists for buckets, etc).
0
1
2
3
4
5
6
7
8
9

bee

抱抱

están

抱抱 hashCode() 1034854400

% 10 0

data hash codehash function

reduce index

hash table

dog

الطبیعة

शानदार

포옹

In Java there’s a caveat
here. Will revisit later.

守门员

kao

peyrin

justin

yokota

横田誠司

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

Hash Tables in Java
Lecture 19, CS61B, Spring 2024

The Ubiquity of Hash Tables

Hash tables are the most popular implementation for sets and maps.
● Great performance in practice.
● Don’t require items to be comparable.
● Implementations often relatively simple.
● Python dictionaries are just hash tables in disguise.

In Java, implemented as java.util.HashMap and java.util.HashSet.
● How does a HashMap know how to compute each object’s hash code?

○ Good news: It’s not “implements Hashable”.
○ Instead, all objects in Java must implement a .hashCode() method.

Object Methods

All classes are hyponyms of Object.

● String toString()
● boolean equals(Object obj)
● int hashCode()
● Class<?> getClass()
● protected Object clone()
● protected void finalize()
● void notify()
● void notifyAll()
● void wait()
● void wait(long timeout)
● void wait(long timeout, int nanos)

Default implementation of hashCode returns memory address.

Won’t discuss or use in 61B.

From earlier in class.

This is where Java implements
hash codes.

Hash Codes in Java

Java’s actual hashCode function for Strings below (code cleaned up slightly):
● “横田誠司” and “±EreWn” map to 839,611,422.

That is, the two calls below both return 839,611,422.
● “横田誠司”.hashCode()
● “±EreWn”.hashCode()

public int hashCode(String s) {
int intRep = 0;
for (int i = 0; i < s.length(); i += 1) {

 intRep = intRep * 31;
 intRep = intRep + s.charAt(i);

}
return intRep;

}

More examples of Real Java HashCodes for Strings

System.out.println("a".hashCode());
System.out.println("bee".hashCode());
System.out.println("포옹".hashCode());
System.out.println("kamala lifefully".hashCode());
System.out.println("đậu hũ".hashCode());

jug ~/Dropbox/61b/lec/hashing
$ java JavaHashCodeExamples
97
97410
1732557
1732557
-2108180664

"a"
"bee"
"포옹"

"kamala lifefully"
"đậu hũ"

Using Negative hash codes: yellkey.com/above

Suppose that ‘s hash code is -1.
● Philosophically, into which bucket is it most natural to place this item?

0

1

2

3

Using Negative hash codes

Suppose that ‘s hash code is -1.
● Philosophically, into which bucket is it most natural to place this item?

○ I say 3, since -1 → 3, 0 → 0, 1 → 1, 2 → 2, 3 → 3, 4 → 0, ...

0

1

2

3

-1

Using Negative hash codes in Java

Suppose that ‘s hash code is -1.
● Unfortunately, -1 % 4 = -1. Will result in index errors!
● Use Math.floorMod instead.

0

1

2

3

public class ModTest {
 public static void main(String[] args) {
 System.out.println(-1 % 4);
 System.out.println(Math.floorMod(-1, 4));
 }
}

$ java ModTest
-1
3

포옹a

Hash Tables in Java

Java hash tables:
● Data is converted by the hashCode method an integer representation called a

hash code.
● The hash code is then reduced to a valid index, using something like the

floorMod function, e.g. Math.floorMod(1732557 % 4) = 8.

0
1
2
3

đậu hũ

đậu hũ hashCode() -2108180664

Math.floorMod(x, 4) 0

data hash codehash function

reduce index

kamala lifefully

bee

Two Important Warnings When Using HashMaps/HashSets

Warning #1: Never store objects that can change in a HashSet or HashMap!
● Such objects are also called “mutable” objects, e.g. they can change.

○ Example: You’d never want to make a HashSet<List<Integer>>.
● If an object’s variables changes, then its hashCode changes. May result in

items getting lost.

Warning #2: Never override equals without also overriding hashCode.
● Can also lead to items getting lost and generally weird behavior.
● HashMaps and HashSets use equals to determine if an item exists in a

particular bucket.

We’ll come back to these warnings later.

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

Hash Table
Performance and
Summary
Lecture 19, CS61B, Spring 2024

Hash Table Runtime with No Resizing

0
1
2
3
4

Suppose we have:
● An fixed number of buckets M.
● An increasing number of items N.

Average list is around N/M items

Even if items are spread out evenly, lists are of length Q = N/M.

● For M = 5, that means Q = Θ(N). Results in linear time operations.

N = 19 M = 5 N / M = 3.8

Resizing Hash Table Runtime

0
1
2
3
4

Suppose we have:
● An increasing number of buckets M.
● An increasing number of items N.

As long as M = Θ(N), then O(N/M) = O(1).

Assuming items are evenly distributed (as above), lists will be approximately
N/M items long, resulting in Θ(N/M) runtimes.
● By doubling every time N gets too big, we ensure that N/M = O(1).
● Thus, worst case runtime for all operations is Θ(N/M) = Θ(1).

○ … unless that operation causes a resize.
○ … and again, we’re assuming even distribution of items.

N = 19 M = 5 N / M = 3.8

Regarding Even Distribution

Even distribution of item is critical for good hash table performance.
● Both tables below have load factor of N/M = 1.
● Left table is much worse!

○ Contains is Θ(N) for x.

Will need to discuss how to ensure even distribution.
● See extra video and slides for more on ensuring an even distribution.

x
x

Hash Tables in Java

Hash tables:
● Data is converted into a hash code.
● The hash code is then reduced to a valid index.
● Data is then stored in a bucket corresponding to that index.
● Resize when load factor N/M exceeds some constant.
● If items are spread out nicely, you get Θ(1) average runtime.

đậu hũ hashCode() -2108180664

Math.floorMod(x, 4) 0

data hash codehash function

reduce index *: Amortized.
†: Assuming items are evenly spread.

contains(x) add(x)

Bushy BSTs Θ(log N) Θ(log N)

Separate Chaining
Hash Table With
No Resizing

Θ(N) Θ(N)

… With Resizing Θ(1)† Θ(1)*†

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

Creating a Good
Hash Code (extra)
Lecture 19, CS61B, Spring 2024

What Makes a good .hashCode()?

Goal: We want hash tables that look like the table on the right.
● Want a hashCode that spreads things out nicely on real data.

○ Example #1: return 0 is a bad hashCode function.
○ Example #2: just returning the first character of a word, e.g. “cat” → 3

was also a bad hash function.
○ Example #3: Adding chars together is bad. “ab” collides with “ba”.
○ Example #4: returning string treated as a base B number can be good.

● Writing a good hashCode() method can be tricky.

Hashbrowns and Hash Codes

How do you make hashbrowns?
● Chopping a potato into nice predictable segments? No way!
● Similarly, adding up the characters is not nearly “random” enough.

Can think of multiplying data by powers of some
base as ensuring that all the data gets scrambled
together into a seemingly random integer.

Example hashCode Function

The Java 8 hash code for strings. Two major differences from our hash codes:
● Represents strings as a base 31 number.

○ Why such a small base? Real hash codes don’t care about uniqueness.
● Stores (caches) calculated hash code so future hashCode calls are faster.

@Override
public int hashCode() {
 int h = cachedHashValue;
 if (h == 0 && this.length() > 0) {
 for (int i = 0; i < this.length(); i++) {
 h = 31 * h + this.charAt(i);
 }
 cachedHashValue = h;
 }
 return h;
}

Example: Choosing a Base

Java’s hashCode() function for Strings:
● h(s) = s0 × 31n-1 + s1 × 31n-2 + … + sn-1

Our asciiToInt function for Strings:
● h(s) = s0 × 126n-1 + s1 × 126n-2 + … + sn-1

Which is better?
● Might seem like 126 is better. Ignoring overflow, this ensures a unique

numerical representation for all ASCII strings.
● … but overflow is a particularly bad problem for base 126!

Example: Base 126

Major collision problem:
● “geocronite is the best thing on the earth.”.hashCode() yields 634199182.
● “flan is the best thing on the earth.”.hashCode() yields 634199182.
● “treachery is the best thing on the earth.”.hashCode() yields 634199182.
● “Brazil is the best thing on the earth.”.hashCode() yields 634199182.

Any string that ends in the same last 32 characters has the same hash code.
● Why? Because of overflow.
● Basic issue is that 126^32 = 126^33 = 126^34 = ... 0.

○ Thus upper characters are all multiplied by zero.
○ See CS61C for more.

Typical Base

A typical hash code base is a small prime.
● Why prime?

○ Never even: Avoids the overflow issue on previous slide.
○ Lower chance of resulting hashCode having a bad relationship with the

number of buckets: See study guide problems and hw3.
● Why small?

○ Lower cost to compute.

A full treatment of good hash codes is well beyond the scope of our class.

Hashbrowns and Hash Codes

How do you make hashbrowns?
● Chopping a potato into nice predictable segments? No way!

Using a prime base yields better “randomness”
than using something like base 126.

Example: Hashing a Collection

Lists are a lot like strings: Collection of items each with its own hashCode:

To save time hashing: Look at only first few items.
● Higher chance of collisions but things will still work.

@Override
public int hashCode() {
 int hashCode = 1;
 for (Object o : this) {
 hashCode = hashCode * 31;
 hashCode = hashCode + o.hashCode();
 }

return hashCode;
}

elevate/smear the current hash code

add new item’s hash code

Example: Hashing a Recursive Data Structure

Computation of the hashCode of a recursive data structure involves recursive
computation.
● For example, binary tree hashCode (assuming sentinel leaves):

@Override
public int hashCode() {

 if (this.value == null) {

 return 0;

 }

 return this.value.hashCode() +

 31 * this.left.hashCode() +

 31 * 31 * this.right.hashCode();

}

Motivation, Set Implementations
Deriving Hash Tables

• WriteItOnTheWallSet
• BobaCounterSet
• DynamicArrayOfListsSet
• lowercase strings
• Integer Overflow
• Hash Codes

Hash Tables in Java
Hash Table Performance and
Summary
Creating a Good Hash Code (extra)
Linear Probing (extra)

Linear Probing (extra)
Lecture 19, CS61B, Spring 2024

Open Addressing: An Alternate Disambiguation Strategy (Extra)

Instead of using linked lists, an alternate and more exotic strategy is “open
addressing”.
● Set is stored as an array of items. Index tells you where to put the item.

If target location is already occupied, use a different location, e.g.
● Linear probing: Use next address, and if already occupied, just keep scanning

one by one.
○ Demo: http://goo.gl/o5EDvb

● Quadratic probing: Use next address, and if already occupied, try looking 4
ahead, then 9 ahead, then 16 ahead, …

● Many more possibilities. See the optional reading for today (or CS170) for a
more detailed look.

In 61B, we’ll use the “separate chaining” approach, where we have linked lists.

http://goo.gl/o5EDvb

Citations

http://www.nydailynews.com/news/national/couple-calls-911-forgotten-mcdonal
ds-hash-browns-article-1.1543096

http://en.wikipedia.org/wiki/Pigeonhole_principle#mediaviewer/File:TooManyPige
ons.jpg

https://cookingplanit.com/public/uploads/inventory/hashbrown_1366322674.jpg

http://www.nydailynews.com/news/national/couple-calls-911-forgotten-mcdonalds-hash-browns-article-1.1543096
http://www.nydailynews.com/news/national/couple-calls-911-forgotten-mcdonalds-hash-browns-article-1.1543096
http://en.wikipedia.org/wiki/Pigeonhole_principle#mediaviewer/File:TooManyPigeons.jpg
http://en.wikipedia.org/wiki/Pigeonhole_principle#mediaviewer/File:TooManyPigeons.jpg
https://cookingplanit.com/public/uploads/inventory/hashbrown_1366322674.jpg

FAQ

What is the distinction between hash set, hash map, and hash table?

A hash set is an implementation of the Set ADT using the “hash table” as its
engine.

A hash map is an implementation of the Map ADT using the “hash table” as its
engine.

A “hash table” is a way of storing information, where you have M buckets that
store N items. Each item has a “hashCode” that tells you which of M buckets to
put that item in.

