Lecture 19

Hash Tables

CS61B, Spring 2024 @ UC Berkeley
Slides Credit: Josh Hug

Motivation, Set Implementations

Motivation, Set
Implementations

Lecture 19, CS61B, Spring 2024

Sets

We've now seen several implementations of the Set (or Map) ADT.

Set Map
m
ArraySet BST 2-3 Tree LLRB
Worst case runtimes
contains(x) add(x) Notes

ArraySet O(N) O(N)
BST O(N) O(N) Random trees are ©(log N).
2-3 Tree O(log N) O(log N) Beautiful idea. Very hard to implement.
LLRB O(log N) O(log N) Maintains bijection with 2-3 tree. Hard to implement.

oL

Limits of Search Tree Based Sets

Our search tree based sets require items to be comparable.

e Need to be able to ask “is X < Y?” Not true of all types (ex. How do you
compare Z and #&7?).

e Could we somehow avoid the need for objects to be comparable?
Our search tree sets have excellent performance, but could maybe be better?
e 0O(log N) is amazing. 1 billion items is still only height ~30.

e Could we somehow do better than ©(log N)?

Today we'll see the answer to both of the questions above is yes.

Deriving Hash Tables
* WriteltOnTheWallSet

WriteltOnTheWallSet

Lecture 19, CS61B, Spring 2024

Data Structures Reflect Real Life

Data Structures tend to be analogous to real-life things, so it's often useful to try
playing the role of a data structure as a human (to get ideas on how they work)

Let's think about a simplified Set of Integers, which requires these two operations:

e Add: Adds a new item to the Set
o Assumption for now: We never try to add something already in the Set
m Can make this assumption because we can call Contains before
adding.
e Contains: Checks if a given number is in the set.

Our goal is to make these operations as fast as possible.

WriteltOnTheWallSet

Let's introduce a human implementation of Set: WriteltOnTheWall Set
We will have a wall, and a pencil.

e Add: Write the number at a random place on the wall
o If the wall is full, get a bigger wall (we saw from ArrayList that this can be
done in constant time amortized, so we can ignore this safely)
e Contains: Look for our number on the wall. If we find it, return true. Otherwise
return false

Strongly analogous to an "ArraySet”
Two questions:

e |sitfastto add?
e Isitfastto contains?

Is it fast to add: Adding "5" to a wall of 10 numbers

212
739 281

953 9384
958

670

131

104
526

Is it fast to add: Adding "5" to a wall of 10 numbers

212
739 281

953 9384 5
958

670

131

104
526

Is it fast to add: Adding "5" to a wall of 100 numbers

281

161

175

995

584

317

35

194

556

290

953

560

455

13

137

340

770

77

644

708

104

815

286

916

228

494

480

226

739

298

958

289

605

616

86

719

957

764

547

56

212

462

543

721

861

737

74

173

973

288

131

591

375

913

109

677

52

979

796

891

984

828

669

872

821

786

632

454

525

867

670

981

970

881

253

672

765

106

o573

579

759
603
651
22
305
216
753
967
920

417

526

922

65

830

530

702

73

551

28

Is it fast to add: Adding "5" to a wall of 100 numbers

281

161

175

995

584

317

35

194

556

290

953

560

455

13

137

340

770

77

644

708

104

815

286

916

228

494

480

226

739

298

958

289

605

616

86

719

957

764

547

56

212

462

543

721

861

737

74

173

973

288

131

591

375

913

109

677

52

979

796

891

984

828

669

872

821

786

632

454

525

867

670

981

970

881

253

672

765

106

o573

579

759
603
651
22
305
216
753
967
920

417

526

922

65

830

530

702

73

551

28

Is it fast to contains: Search for "439" on a wall of 10 numbers

212 131
739 281
670
953 9384 104
958 526

Is it fast to contains: Search for "605" on a wall of 100 numbers

281 953 104 958 212 131 984 670 759 526
161 560 815 289 462 991 828 981 603 922
175 455 286 605 543 375 669 970 651 65
995 13 916 616 721 913 872 881 22 830
584 137 228 86 861 109 821 253 305 530
317 340 494 719 737 677 786 672 216 702
35 770 480 557 74 52 632 765 753 73
194 144 226 764 173 979 454 106 967 951
556 644 739 47 973 796 525 573 920 28

290 708 298 56 288 891 867 579 417 5

Is it fast to contains: Search for "605" on a wall of 100 numbers

281 953 104 958 212 131 984 670 759 526
161 560 815 289 462 991 828 981 603 922
175 455 286 605 543 375 669 970 651 65
995 13 916 616 721 913 872 881 22 830
584 137 228 86 861 109 821 253 305 530
317 340 494 719 737 677 786 672 216 702
35 770 480 557 74 52 632 765 753 73
194 144 226 764 173 979 454 106 967 551
556 644 739 47 973 796 525 573 920 28

290 708 298 56 288 891 867 579 417 5

Is it fast to contains: Search for "H" and "£" on a wall of 1000 Kaniji

AMNEMRIEES EHEBIF T ATREREAZ RGO E R ETRREEEN TR AE T BRI+
BETHESEHAEFHSEINERE IR RRE> R HFINE TR R E MR 2 SIS
PR E R NS S R SEEN SRR EHREERRTEGMEH AR E R AR RUME R UEERE
EEXBRAERELARERERARARMRARELEERFEES SRR TEFBESKIENERRE
TR R Bl 22 X B At T i REAIE (S48 50 00 18 S BB RV & 5 R R B At S8 MRA BRIR IR 15 B A SE AR 28 8 BR AT Rt
R ZE 12 BB B A M o BLE P9 L 5 57 R R I W R SRR (R — R B B A 5 BRI B SR AR 5 T SR BB B
HEER SR FRABEELZIERE S S RKFH_AENEHES UG & N R IBPAEHE R AREH F R 88
AR ERBHEH 15 E B4R M 1K E m R xR R IR EE Uhin = /) 5 1 B R IS HR AR A RHE R B B4
S SEAAE B R ER R B Z B AR BIRELEE XA W AR AR E RIS R F REEFREZER R
HEREBAMTUEREKREREFESEERRERREOGARARRBENGEERELVELEHREE » &
EREFNERBEAZERMEHLEEBRSEILEFRERARNESFTRITERFEHFH] EHEES
LR ER AR E IC R URE S B E R &R T B R~ ihas 2L 5 O B 2 TRRH
BECHEZEEREERRICIMLEFZFERBRERBMFIRAMNIKAERK ADIREREZHEGRIHESH
EEREEGFEESRESHRAEE * UFAMBRARER 2 BEBEREWRICIZ SR RIERER RS
mE RIS HERRTTRIRARIERFE | RERSLBSRERAMDNFIGAERRERGIEEEZRE
BRF— A5 =EEEHER NS EMRTHIMAEESTEMEHETERE B R EREEERE D HHI
R FENEUFELEREMEZEFERZTEM | FRERMERSIARNEREREE = MERER
PR AR I By IR e (e A SRR R E i 2R 25 B IR B AR 55 51| R AL SRAR I TE AR R IR FIAE AT B s P A DR M) 2 B2 B AL
SHREREREZSHARMLE L EERFERRIRHE MG HFERERRES TAERMNERR
HHEAEFCR R RIE IR M I X R E AR E R X MR E S EHE XS REBREREL TBTEARKEETH

@ﬁy%ﬂgi%%@?E%ﬁ%%%%ﬁﬁﬁ&%%ﬁﬂ%%%E%%ﬁﬁ%ﬁﬁﬁ%%ﬁ%ﬁ%@%ﬁm

Is it fast to contains: Search for "H" and "£" on a wall of 1000 Kaniji

AMNEMRIEES EHEBIF T ATREREAZ RGO E R ETRREEEN TR AE T BRI+
BETHESEHAEFHSEINERE IR RRE> R HFINE TR R E MR 2 SIS
PR E R NS S R SEEN SRR EHREERRTEGMEH AR E R AR RUME R UEERE
EEXBRAERELARERERARARMRARELEERFEES SRR TEFBESKIENERRE
TR R R 22 X B At T i REAIE (S48 50 00 18 S BB RY & 5 P S R R B At S8 MRMA BRIR IR 15 B A S AR 28 B BR AT Rt
RERBEA UM REEN L GHERBREBHREZEEHF ZRES B AT MERB &R E TR HRR
HEER SR FRABEELZIERE S S RKFH_AENEHES UG & N R IBPAEHE R AREH F R 88
AR ERBHEH 15 E B4R M 1K E m R xR R IR EE Uhin = /) 5 1 B R IS HR AR A RHE R B B4
S SEAAE B R ER R B Z B AR BIRELEE XA W AR AR E RIS R F REEFREZER R
HEREBAMTUEREKREREFESEERRERREOGARARRBENGEERELVELEHREE » &
EREFNERBEAZERMEHLEEBRSEILEFRERARNESFTRITERFEHFH] EHEES
LR ER AR E IC R URE S B E R &R T B R~ ihas 2L 5 O B 2 TRRH
BECHEZEEREERRICIMLEFZFERBRERBMFIRAMNIKAERK ADIREREZHEGRIHESH
EEREEGFEESRESHRAEE * UFAMBRARER 2 BEBEREWRICIZ SR RIERER RS
mE RIS HERRTTRIRARIERFE | RERSLBSRERAMDNFIGAERRERGIEEEZRE
BRF— A5 =EEEHER NS EMRTHIMAEESTEMEHETERE B R EREEERE D HHI
R FENEUFELEREMEZEFERZTEM | FRERMERSIARNEREREE = MERER
PR AR I By IR e (e A SRR R E i 2R 25 B IR B AR 55 51| R AL SRAR I TE AR R IR FIAE AT B s P A DR M) 2 B2 B AL
SHREREREZSHARMLE L EERFERRIRHE MG HFERERRES TAERMNERR
HHEAEFCR R RIE IR M I X R E AR E R X MR E S EHE XS REBREREL TBTEARKEETH

@ﬁy%ﬂgi%%@?E%ﬁ%%%%ﬁﬁﬁ&%%ﬁﬂ%%%E%%ﬁﬁ%ﬁﬁﬁ%%ﬁ%ﬁ%@%ﬁm

WriteltOnTheWallSet

WriteltOnTheWallSet had fast adds (0(1)), but slow contains (6(N), where N is the
number of elements)

e Good thing: It didn't matter what type the items were; it worked as well with
ints as it did with Kaniji

How can we make this faster?

e Sort the data?
o Makes contains faster, but add slower (since we need to rewrite
everything)
o Doesn't work on Kaniji
o Optimizations to this leads to the TreeSet approach discussed earlier and
log(N) runtime
e C(Categorize the data?
o How do we do that? Get boba.

Deriving Hash Tables

« BobaCounterSet

BobaCounterSet

Lecture 19, CS61B, Spring 2024

When stuck on a hard problem, get boba

TPT has this interesting device to
help organize their boba

e When you order boba, you get
an order number

e Once the boba is made, your
boba gets placed on the
counter for pickup

e Often 5-10 boba on the
counter at a time, so to avoid
customers searching for their
boba, so they place the boba
in the slot corresponding to
the last digit of your order
number

e Fastto add, fast to find

BobaCounterSet

Let's try to formalize this with a BobaCounter Set
We will have a wall split into 10 "bins", and a pencil.

e Add: Write the number to the place on the wall corresponding to the last digit
of the number
o Ex."193" goes in the 3 segment, "100" goes in the 0 segment
o If the wall is full, get a bigger wall (we saw from ArrayList that this can be
done in constant time amortized, so we can ignore this safely)
e Contains: Look for our number on the wall in the bin corresponding to our last
digit. If we find it, return true. Otherwise return false

Two questions:

e Isitfastto add?
e Is it fastto contains?

Is it fast to add: Adding "5" to a wall of 100 numbers

560 920 I 161 131 I 212 922 I 603 73 I 194 644
670 830 I 281 651 I 22 672 I 953 753 I 104 984
530 770 I 591 981 I 462 702 I 13 253 I 764 494
970 290 I 721 891 I 52 632 I 173 973 I 584 74
480 340 I 551 821 I 872 I 573 913 I 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

605 455 106 286 317 547

525 916 56

815 175 I 526 616 I 417 867 I 958 I 289 759

Is it fast to add: Adding "5" to a wall of 100 numbers

560 920 I 161 131 I 212 922 I 603 73 I 194 644
670 830 I 281 651 I 22 672 I 953 753 I 104 984
530 770 I 591 981 I 462 702 I 13 253 I 764 494
970 290 I 721 891 I 52 632 I 173 973 I 584 74
480 340 I 551 821 I 872 I 573 913 I 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

605 455 106 286 317 547

525 5 916 56

815 175 I 526 616 I 417 867 I 958 I 289 759

Is it fast to contains: Search for "605" on a wall of 100 numbers

560 920 I 161 131 I 212 922 I 603 73 I 194 644
670 830 I 281 651 I 22 672 I 953 753 I 104 984
530 770 I 591 981 I 462 702 I 13 253 I 764 494
970 290 I 721 891 I 52 632 I 173 973 I 584 74
480 340 I 551 821 I 872 I 573 913 I 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

605 455 106 286 317 547

525 5 916 56

815 175 I 526 616 I 417 867 I 958 I 289 759

Is it fast to contains: Search for "605" on a wall of 100 numbers

560 920 I 161 131 I 212 922 I 603 73 I 194 644
670 830 I 281 651 I 22 672 I 953 753 I 104 984
530 770 I 591 981 I 462 702 I 13 253 I 764 494
970 290 I 721 891 I 52 632 I 173 973 I 584 74
480 340 I 551 821 I 872 I 573 913 I 454

861 881 543

765 375 216 556 737 677 288 828 109 669

35 305 796 786 137 77 708 298 719 979

65 995 226 86 557 967 228 28 739 579

605 455 106 286 317 547

525 5 916 56

815 175 I 526 616 I 417 867 I 958 I 289 759

BobaCounterSet

BobaCounterSet still has equally fast adds, and contains is now only as slow as
the wall segment with the most elements

e |f the numbers are random, runtime is reduced by a factor of 10
Any problems with this approach?

e Since we split the wall into 10 bins, we have more wasted space. How to
minimize that?

e What do we do when the number of elements gets so large that even one bin
has 1000 items?

e What happens if the numbers aren't random (e.g. most numbers end in a 0)?

e What if we want to deal with things that aren't numbers, like Kanji?

Deriving Hash Tables

DynamicArrayOfListsSet

DynamicArrayOf
ListsSet

Lecture 19, CS61B, Spring 2024

How to minimize wasted space?

Instead of assigning the same amount of wall space per section, dynamically
increase the size of each section as items get added there

Easiest solution here is to use Linked Lists

e Other solutions exist, but we'll focus on the Linked List approach for this class
e We still use one unit of wasted space per empty section (e.g. if 0 had no
elements)
o But overall, this uses less memory than before

—T—> —> 13
—> 14
——> —» 15

OooONOOTUVT P, WDNEOO

How to handle large numbers of items?

Let N = number of items in all bins, M = number of bins

If we assume that values are evenly distributed, each bin has about N/M items
So contains runs in ©(N/M) time.

If M is constant, that reduces to O(N).

e Solution: Have M grow with N so that each bucket has on average a constant
number of elements.

e Needs a way to categorize numbers into M groups
for arbitrary M: "last digit" only works with M=10.

|s there a common mathematical function that generalizes T3 113
"last digit"? —
4| 5 |15

OooONOOTUVT P, WDNEOO

Reduction Functions

Easiest solution is the "modulus” operator.

e Can apply to any value of M
e Evenly distributes randomly-generated numbers
e Relatively prime moduli are statistically independent

e Multiplying M by an integer splits each bin into smaller bins independently

Other reductions are possible, e.g. number of digits. But modulus is the most natural and

best reduction function.

Each integer gets reduced into

an index.

1034854400

L%10—>

reduce

index

OWooNOOTUVUTE, WNEO

— © —» 10 [—»| 1034854400
—I»l 44

—>| 88 —> 4178

—» 3719 | 9

Increasing M

To keep constant time contains, we need N/M to stay less than some constant k.

Two approaches:

e Increase M when the largest bin exceeds k.
o Generally leads to a lot of empty bins, so not used.
e Increase M when the average bin size exceeds k.

Each integer gets reduced into
an index.

1034854400

L%10—> 0

reduce index

OWooNOOTUVUTE, WNEO

> 0 [—» 10 [—»| 1034854400
> 44

- 88 [—» 4178

> 3719 | —» 9

Increasing M

How much to increase M?

e When we increase M, we'll have to reassign every number to a new box, which will take
O©(N) time during that add operation
e Our goalisto have ©(1) amortized runtime, and we've seen from ArrayLists that we can

get that as long as we do O(N) steps rarely enough
e Therefore, M should double every time we resize

Each integer gets reduced into
an index.

1034854400

L%10—> 0

reduce index

OWooNOOTUVUTE, WNEO

> 0 [—» 10 [—»| 1034854400
> 44

- 88 [—»| 4178

- 3719 —» 9

Hash Table Resizing Example

Suppose we set a rule that when N/M is = 1.5, we double M.

N=0 M

4 N/M=0

Hash Table Resizing Example

Suppose we set a rule that when N/M is = 1.5, we double M.
e add(7)

N =1 M

4 N/M=0.25

Hash Table Resizing Example

Suppose we set a rule that when N/M is = 1.5, we double M.
e add(7), add(16)

N=2 M=4 N/M=05
%) —> 16

1

2

3| — 1 7

Hash Table Resizing Example

Suppose we set a rule that when N/M is = 1.5, we double M.
e add(7), add(16), add(3)

N=3 M=4 N/M=0.75
(%] —» 16

1

2

3 —T> 7 > 3

Hash Table Resizing Example

Suppose we set a rule that when N/M is = 1.5, we double M.
e add(7), add(16), add(3), add(11)

N=4 M=4 N/M=1
(%] —»| 16

1

2

3 —T> 7 1 3 > 11

Hash Table Resizing Example

Suppose we set a rule that when N/M is = 1.5, we double M.
e add(7), add(16), add(3), add(11), add(20)

N=5 M=4 N/ M=1.25
(%] —»| 16 —>| 20

1

2

3 —— 7 I 3 [11

Hash Table Resizing Example

Suppose we set a rule that when N/M is = 1.5, we double M.
e add(7), add(16), add(3), add(11), add(20), add(13). Resize triggered.

N=6 M=4 N/M=1.5

0 —» 16 —» 20 N/M is too large.
Time to double!

1 —— 13 -

2

3 —11 7 > 3 > 11

Hash Table Resizing Example

When N/M is = 1.5, then double M.
e Draw the results after doubling M.

N=6 M=4 N/M=1.5

9 —» 16 —» 20 N/M is too large.
Time to double!

1 —7—> 13 o

2

3 —1 7 > 3 > 11

Hash Table Resizing Example

When N/M is = 1.5, then double M.
e Draw the results after doubling M.

N/M=15

20

N=6 M=4
0 —»| 16 >
1 —F— 13

2

3 — 7 >

11

Time to double!

—

M

16

N/M is too large.

8

N/M=0.75

11

20

13

DynamicArrayOfListsSet

The data structure we just built might be called a DynamicArrayOfListsSet.

e Not as intuitive as our original idea, but the core idea stayed the same

If we have N items that are evenly distributed, length of each listis ~N/M.

e N/Mis constant asymptotically.

e So operations are constant on average.

Each integer gets reduced into

an index.

1034854400

reduce

L%G—»

2

index

0 —1 > 0 —>> 6

1

2| —»{ 146 [—>| 103485440

3| = 2133 (—» 9

4 | —>| 46

5

‘ Y
DynamicArrayOfListsSet

We'll think more carefully about runtime later.

Deriving Hash Tables

« lowercase strings

lowercase strings

Lecture 19, CS61B, Spring 2024

Goal: Storing Strings

The data structure we have so far is great for storing integers.
e Let's try to figure out how to store Strings of lowercase characters.

Storing the Word cat

Suppose we want to add(“cat”)

The key question:

e Which bucket do we put “cat” in?

e Oneidea: Use the order in the alphabet of the first letter as the list number.
o a=0,b=1,c=2,.,2=25
o So would go in bucket 2.
o Forces us to start with 26 buckets

What about after resize?

e After the first resize, look at the first two letters
o aa=0,ab=1,ac=2,..,zz=675
o would go in bucket 52.

What are some issues with this approach?

Storing the Word cat (your answer)

Suppose we want to add(“cat”)

The key question:

e Which bucket do we put “cat” in?

e Oneidea: Use the order in the alphabet of the first letter as the list number.
o a=0,b=1,¢c=2,.,2=25
o So would go in bucket 2.

e After the first resize, look at the first two letters, then first three, and so on

What are some issues with this approach?

e Not a random distribution of letters
e Single-letter "a" can't be placed after resize -> extends as resizes grow
([

Storing the Word cat (my answer)

Suppose we want to add(“cat”)

The key question:

e Which bucket do we put “cat” in?

e Oneidea: Use the order in the alphabet of the first letter as the list number.
o a=0,b=1,¢c=2,.,2z=25
o So would go in bucket 2.

e After the first resize, look at the first two letters, then first three, and so on

What are some issues with this approach?

e Where to put short strings (e.g. "a") after resize? (can probably fix)
e It feels wrong for Strings to force our Set to resize to 26, 676, etc. buckets,
when ints allowed for any number of buckets. (CRITICAL)
o Are we going to have to define a new resize for every type of object???

Design Philosophy: Stringy stuff should be done in the String class

The big problem with the previous approach was that Set was responsible for
figuring out how to categorize Strings

e That shouldn't be the Set's job, since otherwise Set would have to know about

every single Object in existence (including ones that aren't built yet), and how
to categorize them

At the same time, String shouldn't be able to dictate when Set decides to resize

e With ints, Set could decide the M/N threshold and bin multiplier, so Set could
decide which values made the most sense (given memory/time constraints).

Solution: Set was most flexible when working on ints, so make it so that Set only
works on ints.

Define a method f (in String) to convert Strings into an int, and store String s in the
bin corresponding to f(s).

e String gets to decide how it wants to be categorized, Set gets to decide when
it wants to resize.

Finding a Way to Store the Word cat

Suppose we want to add(“cat”)

The key question:
e Howdo Il convert “cat” into a number?

What is another idea? Assume for now we're dealing with only lower case letters in
English.

Finding a Way to Store the Word cat (Your Answer)

Suppose we want to add(“cat”)

The key question:
e How dol convert “cat” into a number?

What is another idea? Assume for now we're dealing with only lower case letters in
English.

e Sum up each letter

e ASCIl/Unicode

e Base 26

e Number of characters

Finding a Way to Store the Word cat (My Answer)

Suppose we want to add(“cat”)

The key question:
e How dol convert “cat” into a number?

What is another idea? Assume for now we're dealing with only lower case letters in
English.

e |deally we should evenly distribute Strings; we don't want any int to have
significantly more associated strings than average.
e Treat cat as a base 26 number.

Treating cat as a Base 26 Number

Use all digits by multiplying each by a power of 26.

e 2a=1,b=2cc=3,..,2=26

e Thus the index of “cat”is (3 X 262) + (1 x 26") + (20 x 26°) =
207/4. \ ;

|

Why this specific pattern?
e Let's review how numbers are represented in decimal.

The Decimal Number System vs. My System for Strings

In the decimal number system, we have 10 digits: 0,1, 2,3,4,5,6,7,8,9
Want numbers larger than 97 Use a sequence of digits.

Example: 7091 in base 10
e 7091.,=(7x10%+(0x10% +(9x10") + (1 x 10°

Our system for strings is almost the same, but with letters.

e One difference: In decimal numbers, 000 is the same as 0, but with strings
aaa is different from a.
e To deal with this, we just don't have a 0 in our system, i.e. ais 1, not O.

Test Your Understanding

Convert the word “bee” into a number by using our “powers of 26" strategy.
L _ 2 1 0\ —
Reminder: Cat, = (3 X 267) + (1x26") + (20 x 26°) = 2074,

Hint: ‘b’ is letter 2, and ‘e’ is letter 5.

Test Your Understanding

Convert the word “bee” into a number by using our “powers of 26" strategy.
L _ 2 1 0\ —
Reminder: Cat,, = (3x26%) + (1 x26") + (20 x 26" = 2074,

Hint: ‘b’ is letter 2, and ‘e’ is letter 5.

e bee =(2x26%)+(5x26")+(5x26°% =1487_

Uniqueness

o cat, =(3x26% +(1x26")+ (20 x 26°) = 2074,
o bee, =(2x26%+(5x26")+(5x26°% =1487_,

As long as we pick a base = 26, this algorithm is guaranteed to give each
lowercase English word a unique number!

e Using base 26, no other words will get the number 1487.

The Hash Table

We've now extended our DynamicArrayOfLinkedLists to handle strings.
e Data is converted by a integerization function into an integer representation.

e The integer is then reduced to a valid index, usually using the modulus
operator, e.qg. 2348762878 % 10 = 8.

— > map —> o |—> d
Integerization 0 P £ >3
data Function integer 1
2| —r¥| cat
cat —»| lowerCaseToInt [—¥ 2074 3
4 | —»| cats [—| horse
5
6| —» fish —> ball
%7 > 1 \ |
reduce index DynamicArrayOfLinkedListsY

Implementing englishToInt (optional)

Optional exercise: Try to write a function englishToInt that can convert English
strings to integers by adding characters scaled by powers of 26.

Examples:
o a:l
o 726
e aa: 2/
e bee: 1487
e cat:2074
e dog:??

e potato: ??

Implementing englishToInt (optional) (solution)

oL

/** Converts ith character of String to a letter number.
* e,g. 'a' -> 1, 'b' -> 2, 'z' -> 26 */
public static int letterNum(String s, int i) {
int ithChar = s.charAt(i);
if ((ithChar < 'a") || (ithChar > 'z"))
{ throw new IllegalArgumentException(); }
return ithChar - 'a' + 1;

}

public static int englishToInt(String s) {
int intRep = 0;
for (int i = 0; 1 < s.length(); i += 1) {
intRep = intRep * 26;
intRep = intRep + letterNum(s, 1i);

}

return intRep;

Deriving Hash Tables

 Integer Overflow

Integer Overflow

Lecture 19, CS61B, Spring 2024

DatalndexedStringSet

Using only lowercase English characters is too restrictive.
e What if we want to store strings like “2pac” or “eGg!"?

Suppose we wanted a unique integer for each possible such string.

e Need to assign an integer to all possible characters, e.g. what integer goes
with !

Someone has already done this.
e Let's first discuss briefly discuss the ASCII standard.

ASCII Characters

The most basic character set used by most computers is ASCII format.
e FEach possible character is assigned a value between 0 and 127.
e Characters 33 - 126 are “printable”, and are shown below.
e Forexample, char ¢ = ’°D’ isequivalentto char c = 68.

33 ! 49 1 65 Al [81 q|] [97 a 113 g
34 o 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 C 115 s
36 % 52 4 68 Dl |84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 \Y 102 f 118 v
39 ' 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9| (73 I| |89 y| [105 i 121y
42 % 58 : 74 J 90 7t 106] 122 2
43 + 59 : 75 K 91 [107 k 123 {
44 ; 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M |93] 109 m| [125 3}
46 . 62 > 78 Nl |94 A 110 n 126 ~
47 / 63 2 79 O |95 111 o

48 0 64 @ 80 P 96 3 112 p \

biggest value is 126

DatalndexedStringSet

Maximum possible value for english-only text including punctuation is 126, so can
use 126 as our base in order to ensure unique values for all possible strings.

Examples:

o bee =(98x1262) + (101 x126") + (101 x 126°) = 1,568,675

o 2pac,, =(50x126% + (112x126%) + (97 x 126") + (99 x 126°)
=101,809,233

o eGgl, =(98x126% +(71x126% + (98 x 126") + (33 x 126°)

= 203,178,213

Implementing asciiToInt

Below is a simple formula which converts a String to an integer.
e Treats String as a base 126 number.

public static int asciiToInt(String s) {
int intRep = 0;

for (int i = 0; i < s.length(); 1 += 1) {
intRep = intRep * 126;
intRep = intRep + s.charAt(i);

}

return intRep;

}

What if we want to use characters beyond ASCII?

Going Beyond ASCII

chars in Java also support character sets for other languages and symbols.
e char c = *#’ jsequivalentto char ¢ = 9730.
e char c = "%’ isequivalentto char c = 40140.
e char c = ’dll’ isequivalentto char ¢ = 54812.
e This encoding is known as Unicode. Table is too big to list.

Example: Computing Unique Representations of Kanji

The largest possible value for Kanji is 40,959%, so we'd need to use this as our
base if we want to have a unique representation for all possible strings of Kaniji.

Example:

o iEmua,,. = (27178 x 40959°) + (30000 x 409592) + (35488
x 409597) + (21496 x 409599) =
1,867,571,481,361,683,5350

EHES 1,867,571,481,361,683,549

EHEETE 1,867,571,481,361,683,550

18 F A 1,867,571,481,361,683,551

*If you’re curious, the last character is: %

Deriving Hash Tables

« Hash Codes

Hash Codes

Lecture 19, CS61B, Spring 2024

Finitely Many Integers

So far, we've tried to map any possible string to a unique integer.
e Butin Java, there are only finitely many integers.

That is, we tried to map as a base 40959 number, yielding
1,867,571,481,361,683,550, but this number doesn’t exist in Java as an int.

e Integer value grows exponentially with number of characters. Even limiting to
haiku, we'll get numbers in the quinvigintillions.

Note: Other programming languages do not have finitely many integers. Python,
for example, allows an integer to take on any value.

e On actual physical computers, some integers will not be able to be stored.
e Even when stored, large numbers tend to take much more time to do math on.

What Happens in Practice: Integer Overflow

In Java, the largest possible integer is 2,147,483,647.

e If you go over this limit, you overflow, starting back over at the smallest
integer, which is -2,147,483,648.
e |n other words, the next number after 2,147,483,647 is -2,147,483,648.

int x = 2147483647;
System.out.println(x);
System.out.println(x + 1);

jug ~/Dropbox/61b/lec/hashing
$ javac BiggestPlusOne.java

$ java BiggestPlusOne
2147483647
-2147483648

Consequence of Overflow

Because Java has a maximum integer, we won't get the numbers we expect!
e With base 126, we will run into overflow even for short strings.

o Example: OMenNs,, = 28,196,917,171, which is much greater than
the maximum integer!
o asciiToInt(’omens’) will give us-1,867,853,901 in Java.

Hash Codes

The official term for the number we're computing is “hash code”.

e Via Wolfram Alpha: a hash code “projects a value from a set with many (or
even an infinite number of) members to a value from a set with a fixed
number of (fewer) members.”

e Here, our target set is the set of Java integers, which is of size 4,294,967,296.

That is, our integerization function is a “hash code” because the set we're
projected onto is fixed.

http://mathworld.wolfram.com/HashFunction.html

Java Uses Base 31
Because the range of our hashCode is finite, it is impossible to pursue unique

factorizations for each String.

Instead of base 40,959 or something larger, Java uses 31.
e Fixed mod prevents the issue of having different mods for different Strings

° 40950 = (x 40959°) + (x 40959%) + (x 40959") +
(x 40959%) = 1,867,571,481,361,683,550

° 31 = (x 31%) + (x 31%) + (x 317) + (x 31°) =
839,611,422

System.out.println("f=HELE]".hashCode());

Java Uses Base 31

Because the range of our hashCode is finite, it is impossible to pursue unique
factorizations for each String.

Instead of base 40,959 or something larger, Java uses 31.
o a1 = (X 313) + (X 31%) + (x317) +(x 319) =
839,611,422
Of course there are infinitely many other strings that also map to 839,611,422.
e Example: " x31°) +(69x 314+ (114 x 313+ (101 x31%) + (
x 317) + (x 31%) = 5,134,578,718
e After overflow, 5,134,578,718 is just 839,611,422.

System.out.println("f=HELE]".hashCode());

System.out.println("+EreWn".hashCode());

The Hash Table

What we've just created here is called a hash table.

e Data is converted by a hash function into an integer representation called a
hash code. Range of possible hash codes is -2,147,483,648 to 2,147,483,647.

e The hash code is then reduced to a valid index, usually using the modulus
operator, e.g. 2348762878 % 10 = 8.

o [1|+ =z | +{F5a
data hash function hash code 1 .
2 [—> tEHEEFE
f3 > hashCode() [—>| 1034854400 3 [—1>| justin
4 —1 P Z\JL}.}H\
5| —” kao
L 6
% 10 —> 0 7 | —t*| peyrin —| yokota
reduce index 8| —> bee [—>» dog
9| —» estan [—>| ATHAGR
™~ In Java there’s a caveat \

here. Will revisit later. hash table

The Hash Table

Note, there are other versions of hash tables out there.

e The version we're using is an array of lists.

e This is sometimes called “separate chaining”, where each bucket is a
separate chain of items.

e Many more exotic solutions exist (linear probing, cuckoo hashing, using
things other than linked lists for buckets, etc).

pali

o tata | =8 | =07
data hash function hash code .
—r E
138 —> hashCode() [—>| 1034854400 —1, [,
daplalf
— kao

L%10—> 0

reduce index

peyrin —| yokota
bee — dog
estan [—| UATACR

OWooNOOTUVUTE, WNEO
I
YVVY

I
vV Vv

™~ In Java there’s a caveat \

here. Will revisit later. hash table

Hash Tables in Java

Hash Tables in Java

Lecture 19, CS61B, Spring 2024

The Ubiquity of Hash Tables

Hash tables are the most popular implementation for sets and maps.

Great performance in practice.

Don't require items to be comparable.
Implementations often relatively simple.

Python dictionaries are just hash tables in disguise.

In Java, implemented as java.util.HashMap and java.util.HashSet.

How does a HashMap know how to compute each object’'s hash code?
o Good news: It's not “implements Hashable”.
o Instead, all objects in Java must implement a .hashCode () method.

Object Methods

All classes are hyponyms of Object.

String toString()
boolean equals(Object obj)

int hashCode()
Class<?> getClass()

protected Object clone()

protected void finalize()

void notify()

void notifyAll()

void wait()

void wait(long timeout)

void wait(long timeout, int nanos)

From earlier in class.

This is where Java implements
hash codes.

Won't discuss or use in 61B.

Default implementation of hashCode returns memory address.

Hash Codes in Java

Java’s actual hashCode function for Strings below (code cleaned up slightly):
e “fEHZET]" and “tEreWn” map to 839,611,422.

public int hashCode(String s) {

int intRep = 0;

for (int i = 0; i < s.length(); 1 += 1) {
intRep = intRep * 31;
intRep = intRep + s.charAt(i);

}

return intRep;

}

That is, the two calls below both return 839,611,422.

o “HEHIMT]" hashCode()
e “tEreWn".hashCode()

oL

More examples of Real Java HashCodes for Strings

System.out.println("a".hashCode());
System.out.println("bee".hashCode());
System.out.println("*£=".hashCode());
System.out.println("kamala lifefully".hashCode());
System.out.println("dau hi".hashCode());

jug ~/Dropbox/61b/lec/hashing
$ java JavaHashCodeExamples
"a" Il
"bee" EENLNLY
g 1732557
"kamala lifefully" EVEXEEY
U -2108180664

Using Negative hash codes: yellkey.com/above

Suppose that ,‘ ‘s hash code is -1.
e Philosophically, into which bucket is it most natural to place this item?

Using Negative hash codes

Suppose that ' ‘s hash code is -1.

e Philosophically, into which bucket is it most natural to place this item?
o lsay3,since -1—-3, 0—-0, 1T—-1 252 3—-3 4-0,..

Using Negative hash codes in Java

KCAATCE

Suppose that | ‘s hash code is -1.
e Unfortunately, -1 % 4 =-1. Will result in index errors!
e Use Math.floorMod instead.
o public class ModTest {
public static void main(String[] args) {
1 System.out.println(-1 % 4);
System.out.println(Math.floorMod(-1, 4));
2 }
3 } $ java ModTest

-1

3

Hash Tables in Java

Java hash tables:

e Data is converted by the hashCode method an integer representation called a
hash code.

e The hash code is then reduced to a valid index, using something like the
floorMod function, e.g. Math.floorMod(1732557 % 4) = 8.

o | —T™ dau hi
—_— 11 < g
data hash function hash code 1 >la =& [~ kamala lifefully
2 | —1™ bee
dau hit > hashCode() [-2108180664 3

L Math.floorMod(x,4) ——> ©

reduce index

Two Important Warnings When Using HashMaps/HashSets

Warning #1: Never store objects that can change in a HashSet or HashMap!
e Such objects are also called “mutable” objects, e.g. they can change.
o Example: You'd never want to make a HashSet<List<Integer>>.

e If an object’s variables changes, then its hashCode changes. May result in
items getting lost.

Warning #2: Never override equals without also overriding hashCode.

e Can also lead to items getting lost and generally weird behavior.
e HashMaps and HashSets use equals to determine if an item exists in a
particular bucket.

WEe'll come back to these warnings later.

Hash Table
Performance and

Hash Table Performance and
Summary Summary

Lecture 19, CS61B, Spring 2024

Hash Table Runtime with No Resizing

Suppose we have:

ol +—» = I
1| > — | P> e An fixed number of buckets M.
2| +—» H—» —| > . . :
3 e Anincreasing number of items N.
—1» —> | > >
41 4| —»| |—
N=19 M=5 N/M=3.8 Average list is around N/M items

Even if items are spread out evenly, lists are of length Q = N/M.

e For M =5, that means Q = ©(N). Results in linear time operations.

Resizing Hash Table Runtime

o TaT——s Suppose we have:
1 4> — —| | e An increasing number of buckets M.
2 —T > —> — > . . .
3 N N e Anincreasing number of items N.
— —> > >
41 4| —| |—
N=19 M=5 N/M=38 As long as M = O(N), then O(N/M) = 0(1).

Assuming items are evenly distributed (as above), lists will be approximately
N/M items long, resulting in ©(N/M) runtimes.

e By doubling every time N gets too big, we ensure that N/M = 0(1).
e Thus, worst case runtime for all operations is @(N/M) = 0(1).

o .. unless that operation causes a resize.

o .. and again, we're assuming even distribution of items.

Regarding Even Distribution

Even distribution of item is critical for good hash table performance.
e Both tables below have load factor of N/M = 1.
e |efttableis much worse!
o Contains is ©(N) for x.

Will need to discuss how to ensure even distribution.
e See extra video and slides for more on ensuring an even distribution.

FREER'

Hash Tables in Java

Hash tables:
e Datais converted into a hash code.
e The hash code is then reduced to a valid index.
e Data is then stored in a bucket corresponding to that index.
e Resize when load factor N/M exceeds some constant.
e |If items are spread out nicely, you get (1) average runtime.
contains(x) add(x)
data hash function hash code Bushy BSTs O(log N) O(log N)
dau hi > hashCode() [-2108180664 Separate Chaining o) o)
Hash Table With
No Resizing
L Math.floorMod(x, 4) +——>| © ... With Resizing o)t O(1)**

reduce index *: Amortized.

T: Assuming items are evenly spread.

Creating a Good
Hash Code (extra)

Lecture 19, CS61B, Spring 2024

Creating a Good Hash Code (extra)

What Makes a good .hashCode()?

Goal: We want hash tables that look like the table on the right.

e Want a hashCode that spreads things out nicely on real data.
o Example #1: return 0 is a bad hashCode function.
o Example #2: just returning the first character of a word, e.g. “cat” — 3
was also a bad hash function.
o Example #3: Adding chars together is bad. “ab” collides with “ba”.
o Example #4: returning string treated as a base B number can be good.
e Writing a good hashCode() method can be tricky.

FREER'

Hashbrowns and Hash Codes

How do you make hashbrowns?

e Chopping a potato into nice predictable segments? No way!
e Similarly, adding up the characters is not nearly “random” enough.

Can think of multiplying data by powers of some
base as ensuring that all the data gets scrambled
together into a seemingly random integer.

Example hashCode Function

The Java 8 hash code for strings. Two major differences from our hash codes:
e Represents strings as a base 31 number.
o Why such a small base? Real hash codes don't care about uniqueness.
e Stores (caches) calculated hash code so future hashCode calls are faster.

@Override
public int hashCode() {
int h = cachedHashValue;
if (h == 0 && this.length() > 9) {
for (int 1 = 0; i < this.length(); i++) {
h = 31 * h + this.charAt(i);

}

cachedHashValue = h;
}
return h;

oL

Example: Choosing a Base

Java's hashCode() function for Strings:
o h(s)=s5,x31""+s x31"+ . +s
Our asciiToInt function for Strings:
o h(s)=s,x126"" +s x126"*+ .. +s _

Which is better?

e Might seem like 126 is better. Ignoring overflow, this ensures a unique
numerical representation for all ASCII strings.

e .. butoverflow is a particularly bad problem for base 126!

Example: Base 126

Major collision problem:
e “geocronite is the best thing on the earth.”.hashCode() yields 634199182.
e “flanis the best thing on the earth.”.hashCode() yields 634199182.
e “treachery is the best thing on the earth.”.hashCode() yields 634199182.
e “Brazil is the best thing on the earth.”.hashCode() yields 634199182.

Any string that ends in the same last 32 characters has the same hash code.
e Why? Because of overflow.
e Basicissueisthat 12632 = 126*33 = 12634 = ... 0.
o Thus upper characters are all multiplied by zero.
o See CS61C for more.

Typical Base

A typical hash code base is a small prime.
e Why prime?
o Never even: Avoids the overflow issue on previous slide.

o Lower chance of resulting hashCode having a bad relationship with the
number of buckets: See study guide problems and hw3.

e Why small?
o Lower cost to compute.

A full treatment of good hash codes is well beyond the scope of our class.

Hashbrowns and Hash Codes

How do you make hashbrowns?
e Chopping a potato into nice predictable segments? No way!

Using a prime base yields better “randomness”
than using something like base 126.

g 5 ‘lqz >
- o

g RS |
- ’ .
: . TG ¢
3 e

oy i 3

T 2 ® & _pi‘aj,

T ey A p
< ...'b{’-’ S e
4 =

Example: Hashing a Collection

Lists are a lot like strings: Collection of items each with its own hashCode:

@Override
public int hashCode() {
int hashCode = 1; elevate/smear the current hash code
for (ObjECt o . this) { / add new item’s hash code
hashCode = hashCode * 31;

hashCode hashCode + o.hashCode();

}

return hashCode;

}

To save time hashing: Look at only first few items.
e Higher chance of collisions but things will still work.

oL

Example: Hashing a Recursive Data Structure

Computation of the hashCode of a recursive data structure involves recursive
computation.

e For example, binary tree hashCode (assuming sentinel leaves):

@Override
public int hashCode() {

if (this.value == null) {
return 9;
}
return this.value.hashCode() +
31 * this.left.hashCode() +
31 * 31 * this.right.hashCode();

Linear Probing (extra)

Lecture 19, CS61B, Spring 2024

Linear Probing (extra)

Open Addressing: An Alternate Disambiguation Strategy (Extra)

Instead of using linked lists, an alternate and more exotic strategy is “open
addressing”.

e Setis stored as an array of items. Index tells you where to put the item.

If target location is already occupied, use a different location, e.g.

e Linear probing: Use next address, and if already occupied, just keep scanning
one by one.
o Demo: http://goo.gl/o5EDvD
e Quadratic probing: Use next address, and if already occupied, try looking 4
ahead, then 9 ahead, then 16 ahead, ...
e Many more possibilities. See the optional reading for today (or CS170) for a
more detailed look.

In 61B, we'll use the “separate chaining” approach, where we have linked lists.

http://goo.gl/o5EDvb

Citations

http://www.nydailynews.com/news/national/couple-calls-911-forgotten-mcdonal
ds-hash-browns-article-1.1543096

http://en.wikipedia.org/wiki/Pigeonhole_principle#mediaviewer/File:TooManyPige
ons.jpd

https://cookingplanit.com/public/uploads/inventory/hashbrown 1366322674.jpg

http://www.nydailynews.com/news/national/couple-calls-911-forgotten-mcdonalds-hash-browns-article-1.1543096
http://www.nydailynews.com/news/national/couple-calls-911-forgotten-mcdonalds-hash-browns-article-1.1543096
http://en.wikipedia.org/wiki/Pigeonhole_principle#mediaviewer/File:TooManyPigeons.jpg
http://en.wikipedia.org/wiki/Pigeonhole_principle#mediaviewer/File:TooManyPigeons.jpg
https://cookingplanit.com/public/uploads/inventory/hashbrown_1366322674.jpg

FAQ

What is the distinction between hash set, hash map, and hash table?

A hash set is an implementation of the Set ADT using the “hash table” as its
engine.

A hash map is an implementation of the Map ADT using the “hash table” as its
engine.

A “hash table” is a way of storing information, where you have M buckets that
store N items. Each item has a “hashCode” that tells you which of M buckets to
put that itemin.

