= (C CS61B Textbook Q

1911 A first attempt:
DatalndexedintegerSet

Let us begin by considering the following approach. This approach was introduced in
Hashing Video 1.

For now, we're only going to try to improve complexity from ©(logN) to ©(1). We're going
to not worry about comparability. In fact, we're going to only consider storing and searching
for int s.

Here's an idea: let's create an ArrayList of type boolean and size 2 billion. Let everything
be false by default.

The add(int x) method simply sets the x position in our ArrayList to true. This takes

©(1) time.

The contains(int x) method simply returns whether the x position in our ArrayList
is true or false . This also takes ©(1) time!

public class DataIndexedIntegerSet {
private boolean[] present;

public DataIndexedIntegerSet() {
present = new boolean[2000000000] ;

¥
public void add(int x) {
present[i] = true;

ky

public boolean contains(int x) %
return present[i];
%

There we have it. That's all folks.

Well, not really. What are some potential issues with this approach?



Extremely wasteful. If we assume that a boolean takes 1 byte to store, the above needs
2GB of space per new DataIndexedIntegerSet() . Moreover, the user may only insert a
handful of items...

What do we do if someone wants to insert a String ? Or other data types?

Let's look at this next. Of course, we may want to insert other things, like Dog s.
That'll come soon!

Previous
19.1 Introduction to Hashing: Data Indexed Arrays

Next
19.1.2 A second attempt: DatalndexedWordSet



