= (C CS61B Textbook Q

21.3 PQ Implementation

[DataStructures5, Video 6] PQ Implementation Considerations

PQ Implementation Considerations

The actual implementation, which we will use and the book uses, is quite similar to the
representation we discussed at the end of the previous chapter. The one difference is that
we will leave one empty spot at the beginning of the array to simplify computation.

leftChild(k) =k * 2
rightChild(k) =k *2+1

parent(k) = k:/2

Comparing to alternative implementations

Methods Ordered Array Bushy BST Hash Table Heap

add ©(N) ©(logN) ©(1) ©(logN)



Methods Ordered Array Bushy BST Hash Table Heap

getSmallest @(1) G(ZOQN) G(N) 9(1)

~ 7/ AT\ ~ /1 AT\ ~ 7/ AT\ ~ /1 AT\

Awesome! We can see that we have improved our runtime and we have also solved the
problem of duplicate elements. Couple notes:

Heap operations are amortized analysis, since the array will have to resize (not a big
deal)

BST's can have constant time getSmallest if pointeris stored to smallest element

Array-based heaps take around 1/3rd the memory it takes to represent a heap using
approach 1A (direct pointers to children)

Exercise 13.3.1 Some lingering implementation questions:

How will the PQ know how to order the items? Say we had a PQ of dogs, would it order
by weight or breed?

Is there a way to allow for a flexibility of orderings?

What could we do to make a MinPQ into a MaxPQ?

Previous
21.2 Heaps

Next
21.4 Summary



