Suppose we are running Dijkstra's on the graph below, starting at source * 6 points vertex A. So far, we've visited A & B.

After we visit C, what would the new distance to each vertex be?

The pink edges represent the Shortest Paths Tree right before visiting C.

Node A B C D E F G	distTo 0 1 2 4 3 ∞	edgeTo - A A B		A 2	1 3	D 1 E	G
		1	2	3	4	5	inf
В		0	0	0	0	0	0
С		0	0	0	0	0	0
D		0	0	0	0	0	0
Е		0	0	0	0	0	0
F		0	0	0	0	0	0
G		0	0	0	0	0	0

True or False: Dijkstra's uses a First-In-First-Out queue to determine which vertex to visit next	0 points
O True	

The BART is coding a navigation app and needs your help. The subway

2 points
system can be represented as a weighted graph, where edges represent the
time it takes to ride between stations. Their app should be able to efficiently
provide the quickest ride between a user's start & end stops.

For instance, if the user wants to go from Embarcadero to Berryessa, the app outputs: Embarcadero \rightarrow OAK \rightarrow Berryessa

Which algorithm should they use?

- Breadth First Search
- O Depth First Search
- O Dijkstra's
- O A*

Submit Clear form

This form was created inside of UC Berkeley. Report Abuse

Google Forms