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Warm-up Problem

Given a undirected graph, determine if it contains any cycles.
● May use any data structure or algorithm from the course so far.
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Warm-up Problem

Given a undirected graph, determine if it contains any cycles.
● May use any data structure or algorithm from the course so far.

Approach 1: Do DFS from 0 (arbitrary vertex).
● Keep going until you see a marked vertex.
● Potential danger:

○ 1 looks back at 0 and sees marked.
○ Solution: Just don’t count the node you came from.

Worst case runtime: O(V + E) -- do study guide problems to reinforce this.
● With some cleverness, can give a tighter bound of O(V) (the number of edges 

we check is at most V, so O(V+E) = O(V))
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Warm-up Problem

Given a undirected graph, determine if it contains any cycles.
● May use any data structure or algorithm from the course so far.

Approach 2: Use a WeightedQuickUnionUF object.
● For each edge, check if the two vertices are connected.

○ If not, union them.
○ If so, there is a cycle.

Worst case runtime: O(V + E α(V)) if we have path compression.
● Here α(V) is the inverse Ackermann function from Disjoint Sets.
● With similar reasoning from before, we can reduce to O(V α(V))
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https://en.wikipedia.org/wiki/Ackermann_function
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Spanning Trees

Given an undirected graph, a spanning tree T is a subgraph of G, where T:
● Is connected.
● Is acyclic.
● Includes all of the vertices.

Example:
● Spanning tree is the black edges and vertices.

A minimum spanning tree is a spanning tree of minimum total weight.
● Example: Network of power lines that connect a bunch of buildings.

These two properties 
make it a tree.

This makes it spanning.



Spanning Trees



Which are Spanning Trees? yellkey.com/TODO
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MST Applications

Left: Old school handwriting recognition (link)
Right: Medical imaging (e.g. arrangement of nuclei in cancer cells)
For more, see: http://www.ics.uci.edu/~eppstein/gina/mst.html

http://dspace.mit.edu/bitstream/handle/1721.1/16727/43551593-MIT.pdf;sequence=2
http://www.ics.uci.edu/~eppstein/gina/mst.html
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https://www.youtube.com/watch?v=50K-QvOHfOE&list=PL8FaHk7qbOD7SvlWei_-neNmgmXzJG2ad
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Find the MST for the graph. 
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MST

Find the MST for the graph. 
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MST vs. SPT

Is the MST for this graph also a shortest paths tree? If so, using which node as the 
starting node for this SPT?
A. A
B. B
C. C
D. D
E. No SPT is an MST.
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MST vs. SPT

Is the MST for this graph also a shortest paths tree? If so, using which node as the 
starting node for this SPT?
A. A
B. B
C. C
D. D
E. No SPT is an MST.
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s = D
Doesn’t work for s = D!



MST vs. SPT, http://yellkey.com/approach

Is the MST for this graph also a shortest paths tree? If so, using which node as the 
starting node for this SPT?
A. A
B. B
C. C
D. D
E. No SPT is an MST.
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MST vs. SPT, http://yellkey.com/approach

A shortest paths tree depends on the start vertex:
● Because it tells you how to get from a source to EVERYTHING.

There is no source for a MST.

Nonetheless, the MST sometimes happens to be an SPT for a specific vertex.



Spanning Tree

Give a valid MST for the graph below.
● Hard B level question: Is there a node whose SPT is also the MST?

A. Yes
B. No
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Spanning Tree

Give a valid MST for the graph below.
● Is there a node whose SPT is also the MST? [see next slide]
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Spanning Tree

Give a valid MST for the graph below.
● Is there a node whose SPT is also the MST?
● No! Minimum spanning tree must include only 2 of the 2 weight edges, but the 

SPT always includes at least 3 of the 2 weight edges.
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Example SPT from bottom left vertex:
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A Useful Tool for Finding the MST: Cut Property

● A cut is an assignment of a graph’s nodes to two non-empty sets.
● A crossing edge is an edge which connects a node from one set to a node 

from the other set.

Cut property: Given any cut, minimum weight crossing edge is in the MST.
● For rest of today, we’ll assume edge weights are unique.



Cut Property in Action: http://yellkey.com/TODO

Which edge is the minimum weight edge crossing the cut {2, 3, 5, 6}?

0-7  0.16
2-3  0.17
1-7  0.19
0-2  0.26
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
4-5  0.35
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
3-6  0.52
6-0  0.58
6-4  0.93



Cut Property in Action

Which edge is the minimum weight edge crossing the cut {2, 3, 5, 6}?
● 0-2. Must be part of the MST!

0-7  0.16
2-3  0.17
1-7  0.19
0-2  0.26
5-7  0.28
1-3  0.29
1-5  0.32
2-7  0.34
4-5  0.35
1-2  0.36
4-7  0.37
0-4  0.38
6-2  0.40
3-6  0.52
6-0  0.58
6-4  0.93



Cut Property Proof

Suppose that the minimum crossing edge e were not in the MST.
● Adding e to the MST creates a cycle.
● Some other edge f must also be a crossing edge.
● Removing f and adding e is a lower weight spanning tree.
● Contradiction! 



Generic MST Finding Algorithm

Start with no edges in the MST.
● Find a cut that has no crossing edges in the MST. 
● Add smallest crossing edge to the MST.
● Repeat until V-1 edges.

This should work, but we need some way of finding a cut with no crossing edges!
● Random isn’t a very good idea.
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Prim’s Demo (Conceptual)

Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.

B

C

D

E

F

G
As

Node   edgeTo
A        -
B        -
C        -
D        -
E        -
F        -
G        -

5
2

1

15

3

2
11

3

1

1

41



Prim’s Demo (Conceptual)
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B        -
C        -
D        -
E        -
F        -
G        -

5
2

1

15

3

2
11

3

1

1

41

Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Which edge is added next?

Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Which edge is added next?
● Either A-B or D-E are guaranteed to work (see exercises for proof)!
● Note: They are not both guaranteed to be in the MST.

Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.



Prim’s Demo (Conceptual)
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.
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Start from some arbitrary start node.
● Add shortest edge (mark black) that has one node inside the MST under 

construction. Repeat until V-1 edges.

Prim’s Demo (Conceptual)



Prim’s Algorithm 

Start from some arbitrary start node.
● Repeatedly add shortest edge (mark black) that has one node inside the MST 

under construction.
● Repeat until V-1 edges.

Why does Prim’s work? Special case of generic algorithm.
● Suppose we add edge e = v->w.
● Side 1 of cut is all vertices connected to start, side 2 is all the others.
● No crossing edge is black (all connected edges on side 1).
● No crossing edge has lower weight (consider in increasing order).
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Prim’s Algorithm Implementation 

The natural implementation of the conceptual version of Prim’s algorithm is highly 
inefficient.
● Example: Iterating over all purple edges shown is unnecessary and slow.

Can use some cleverness and a PQ to speed things up.

Realistic Implementation Demo
● Very similar to Dijkstra’s!
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Prim’s Demo

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
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Prim’s Demo
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Fringe: [(B: ∞), (C: ∞), (D: ∞), (E: ∞), (F: ∞), (G: ∞)]

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Note: Vertex removal in this implementation of Prim’s is equivalent 
to edge addition in the conceptual version of Prim’s.

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
● Show distTo, edgeTo, and fringe after next relaxation.



Prim’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A                 -
B        2        A
C                 A
D        ∞        -
E                 C
F        15       C
G        ∞        -

5
2

1

15

3

2
11

3

1

1

Fringe: [(B: 2), (F: 15), (D: ∞), (G: ∞)]

4

∞

∞

1

2

15

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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No need to consider edges with 
weight 5 and 3 since other side 
is already marked!

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A                 -
B                 A
C                 A
D                 E
E                 C
F        4        E
G        3        E

5
2

1

15

3

2
11

3

1

1

Fringe: [(G: 3), (F: 4)]

41

3

4

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo
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C                 A
D                 E
E                 C
F        4        E
G        1        D

5
2

1

15

3

2
11

3

1

1

Fringe: [(G: 1), (F: 4)]

41

3

4

1

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A                 -
B                 A
C                 A
D                 E
E                 C
F        4        E
G        1        D

5
2

1

15

3

2
11

3

1

1

Fringe: [(G: 1), (F: 4)]

41
4

1

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A                 -
B                 A
C                 A
D                 E
E                 C
F        1        G
G                 D

5
2

1

15

3

2
11

3

1

1

Fringe: [(F: 1)]

41
4

1

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A                 -
B                 A
C                 A
D                 E
E                 C
F        1        G
G                 D

5
2

1

15

3

2
11

3

1

1

Fringe: [(F: 1)]

41

1

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.



Prim’s Demo

B

C

D

E

F

G
As

Node  distTo    edgeTo
A                 -
B                 A
C                 A
D                 E
E                 C
F                 G
G                 D

5
2

1

15

3

2
11

3

1

1

Fringe: []

41

Insert all vertices into fringe PQ, storing vertices in order of distance from tree.
Repeat: Remove (closest) vertex v from PQ, and relax all edges pointing from v.
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Prim’s vs. Dijkstra’s

Prim’s and Dijkstra’s algorithms are exactly the same, except Dijkstra’s considers 
“distance from the source”, and Prim’s considers “distance from the tree.”

Visit order:
● Dijkstra’s algorithm visits vertices in order of distance from the source.
● Prim’s algorithm visits vertices in order of distance from the MST under 

construction.

Relaxation:
● Relaxation in Dijkstra’s considers an edge better based on distance to source.
● Relaxation in Prim’s considers an edge better based on distance to tree.



Prim’s vs. Dijkstra’s (visual)

Demos courtesy of Kevin Wayne, Princeton University

http://www.youtube.com/watch?v=ZCMTccvfaTQ&t=216


public class PrimMST {
  public PrimMST(EdgeWeightedGraph G) {
    edgeTo = new Edge[G.V()];
    distTo = new double[G.V()];
    marked = new boolean[G.V()];
    fringe = new SpecialPQ<Double>(G.V());
 
    distTo[s] = 0.0;
    setDistancesToInfinityExceptS(s);
    insertAllVertices(fringe);
 
    /* Get vertices in order of distance from tree. */
    while (!fringe.isEmpty()) {
      int v = fringe.delMin();
      scan(G, v);
    } 
  }
  ...

Prim’s Implementation (Pseudocode, 1/2)

Fringe is ordered by 
distTo tree. Must be a 
specialPQ like Dijkstra’s.

Get vertex closest to tree 
that is unvisited.
Scan means to consider 
all of a vertices outgoing 
edges.



private void scan(EdgeWeightedGraph G, int v) {
  marked[v] = true;
  for (Edge e : G.adj(v)) {
    int w = e.other(v);
    if (marked[w]) { continue; } 
    if (e.weight() < distTo[w]) {
      distTo[w] = e.weight();
      edgeTo[w] = e;
      pq.decreasePriority(w, distTo[w]);
    }
  }
}

Prim’s Implementation (Pseudocode, 2/2)

Important invariant, fringe must be ordered by 
current best known distance from tree.

Already in MST, so go to next edge.
Better path to a particular vertex 
found, so update current best known 
for that vertex.

Vertex is closest, so add to MST.

  while (!fringe.isEmpty()) {
    int v = fringe.delMin();
    scan(G, v);
  } 



Prim’s Runtime

What is the runtime of Prim’s 
algorithm?
● Assume all PQ operations 

take O(log(V)) time.
● Give your answer in Big O 

notation.
private void scan(EdgeWeightedGraph G, int v) {
  marked[v] = true;
  for (Edge e : G.adj(v)) {
    int w = e.other(v);
    if (marked[w]) { continue; } 
    if (e.weight() < distTo[w]) {
      distTo[w] = e.weight();
      edgeTo[w] = e;
      pq.decreasePriority(w, distTo[w]);
    }
  }
}

  while (!fringe.isEmpty()) {
    int v = fringe.delMin();
    scan(G, v);
  } 



Prim’s Algorithm Runtime

Priority Queue operation count, assuming binary heap based PQ:
● Insertion: V, each costing O(log V) time.
● Delete-min: V, each costing O(log V) time.
● Decrease priority: O(E), each costing O(log V) time.

○ Operation not discussed in lecture, but it was in lab 10.

Overall runtime: O(V*log(V) + V*log(V) + E*log(V)). 
● Assuming E > V, this is just O(E log V) (Same as Dijkstra's).

# Operations Cost per operation Total cost

PQ add V O(log V) O(V log V)

PQ delMin V O(log V) O(V log V)

PQ decreasePriority O(E) O(log V) O(E log V)
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(Demo)



Kruskal’s Demo

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.

B

C

D

E

F

G
As

MST: []

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41



Kruskal’s Demo

B

C

D

E

F

G
As

MST: []

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle?

White and green colorings for 
vertices show cut being implicitly 
utilized by Kruskal’s algorithm.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? No.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? No.

White and green colorings for 
vertices show cut being implicitly 
utilized by Kruskal’s algorithm.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? No.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle?

White and green colorings for 
vertices show cut being implicitly 
utilized by Kruskal’s algorithm.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? No.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle?

White and green colorings for 
vertices show cut being implicitly 
utilized by Kruskal’s algorithm.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? No.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle?

White and green colorings for 
vertices show cut being implicitly 
utilized by Kruskal’s algorithm.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? No.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle?

White and green colorings for 
vertices show cut being implicitly 
utilized by Kruskal’s algorithm.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? Yes. Reject!

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle?

White and green colorings for 
vertices show cut being implicitly 
utilized by Kruskal’s algorithm.

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B, D-E]

5
2

1

15

3

3
11

3

1

1

A-C    1
C-E    1
D-G    1
F-G    1
A-B    2
E-B    3
D-E    3
G-E    3
E-F    4
B-C    5
B-D    11
C-F    15

41

Cycle? No.
V-1 edges, so we’re done!

Consider edges in order of increasing weight. Add to MST unless a cycle is created.
Repeat until V-1 edges.



Kruskal’s Algorithm

Initially mark all edges gray.
● Consider edges in increasing order of weight.
● Add edge to MST (mark black) unless doing so creates a cycle.
● Repeat until V-1 edges.

Why does Kruskal’s work? Special case of generic MST algorithm.
● Suppose we add edge e = v->w.
● Side 1 of cut is all vertices connected to v, side 2 is everything else.
● No crossing edge is black (since we don’t allow cycles).
● No crossing edge has lower weight (consider in increasing order). 
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Optimized 
Kruskal’s (Demo)



Kruskal’s Demo

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.

B

C

D

E

F

G
As

MST: []

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

WQU: []



Kruskal’s Demo

B

C

D

E

F

G
As

MST: []

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? isConnected(A, C)

WQU: []

Removed edge: A-C

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? No. union(A, C). add(A-C).

WQU: [A-C]

Removed edge: A-C

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? isConnected(C, E)

WQU: [A-C]

Removed edge: C-E

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? No. union(C, E). add(C-E)

WQU: [A-C-E]

Removed edge: C-E

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? isConnected(D, G)

WQU: [A-C-E]

Removed edge: D-G

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? No. union(D, G). add(D-G).

WQU: [A-C-E, D-G]

Removed edge: D-G

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? isConnected(F, G)

WQU: [A-C-E, D-G]

Removed edge: F-G

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? No. union(F, G). add(F-G).

WQU: [A-C-E, D-G-F]

Removed edge: F-G

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? isConnected(A, B)

WQU: [A-C-E, D-G-F]

Removed edge: A-B

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? No. union(A, B). add(A-B)

WQU: [A-C-E-B, D-G-F]

Removed edge: A-B

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? isConnected(E, B)

WQU: [A-C-E-B, D-G-F]

Removed edge: E-B

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? Yes. Do nothing.

WQU: [A-C-E-B, D-G-F]

Removed edge: E-B

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? isConnected(D, E)

WQU: [A-C-E-B, D-G-F]

Removed edge: D-E

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.



Kruskal’s Demo

B

C

D

E

F

G
As

MST: [A-C, C-E, D-G, F-G, A-B, D-E]

5
2

1

15

3

3
11

3

1

1

Fringe: (A-C: 1), (C-E: 1),
(D-G: 1), (F-G: 1),
(A-B: 2), (E-B: 3),
(D-E: 3), (G-E: 3),
(E-F: 4), (B-C: 5),
(B-D: 11), (C-F: 15)

41

Cycle? No. union(D, E). add(D-E).

V-1 edges, so done.
WQU: [A-C-E-B-D-G-F]

Removed edge: D-E

Insert all edges into PQ. 
Repeat: Remove smallest weight edge. Add to MST if no cycle created.
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Prim’s Algorithm
• Basic Prim's (Demo)
• Optimized Prim's (Demo)
• Prim’s Algorithm Code and 

Runtime
Kruskal’s Algorithm:

• Basic Kruskal’s (Demo)
• Optimized Kruskal’s (Demo)
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Runtime
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Prim's



Prim’s vs. Kruskal’s (visual)

Demos courtesy of Kevin Wayne, Princeton University

http://www.youtube.com/watch?v=vmWSnkBVvQ0


Lecture 25, CS61B, Spring 2024

Graph Problem Warmup
Minimum Spanning Trees

• Intro
• The Cut Property

Prim’s Algorithm
• Basic Prim's (Demo)
• Optimized Prim's (Demo)
• Prim’s Algorithm Code and 

Runtime
Kruskal’s Algorithm:

• Basic Kruskal’s (Demo)
• Optimized Kruskal’s (Demo)
• Kruskal's vs. Prim's
• Kruskal's Algorithm Code and 

Runtime

Kruskal's 
Algorithm Code 
and Runtime



Kruskal’s Implementation (Pseudocode)

public class KruskalMST {
  private List<Edge> mst = new ArrayList<Edge>();
 
  public KruskalMST(EdgeWeightedGraph G) {
    MinPQ<Edge> pq = new MinPQ<Edge>();
    for (Edge e : G.edges()) {
      pq.insert(e);
    }
    WeightedQuickUnionPC uf = 
             new WeightedQuickUnionPC(G.V());
    while (!pq.isEmpty() && mst.size() < G.V() - 1) {
      Edge e = pq.delMin();
      int v = e.from();
      int w = e.to();
      if (!uf.connected(v, w)) {
        uf.union(v, w);
        mst.add(e); 
} } } }

What is the runtime of 
Kruskal’s algorithm?
● Assume all PQ operations 

take O(log(V)) time.
● Assume all WQU 

operations take O(log* V) 
time.

● Give your answer in Big O 
notation.



Kruskal’s Runtime

Kruskal’s algorithm on previous slide is O(E log E).

Note 1: If we use a pre-sorted list of edges (instead of a PQ), then we can simply iterate through the list in 
O(E) time, so overall runtime is O(E + V log* V + E log* V) = O(E log* V).
Note 2: E < V2, so log E < log V2 = 2 log V, so O(E log E) = O(E log V). So while Kruskal's algorithm will be 
slower than Prim's algorithm for a worst-case unsorted set of edges, it won't be asymptotically slower.

Operation Number of Times Time per Operation Total Time

Insert E O(log E) O(E log E)

Delete minimum O(E) O(log E) O(E log E)

union O(V) O(log* V) O(V log* V)

isConnected O(E) O(log* V) O(E log* V)

Fun fact: In HeapSort lecture, we will 
discuss how do this step in O(E) time 
using “bottom-up heapification”.



Shortest Paths and MST Algorithms Summary

Question: Can we do better than O(E log V)? See bonus slides.

Problem Algorithm Runtime (if E > V) Notes

Shortest Paths Dijkstra’s O(E log V) Fails for negative 
weight edges.

MST Prim’s O(E log V) Analogous to 
Dijkstra’s.

MST Kruskal’s O(E log E) Uses WQUPC.

MST Kruskal’s with 
pre-sorted edges

O(E log* V) Uses WQUPC.



These slides are covered in the web 
videos, but we won't cover them live.

Lecture 25, CS61B, Spring 2024

Extra: MST 
Algorithm History

Graph Problem Warmup
Minimum Spanning Trees

• Intro
• The Cut Property

Prim’s Algorithm
• Basic Prim's (Demo)
• Optimized Prim's (Demo)
• Prim’s Algorithm Code and 

Runtime
Kruskal’s Algorithm:

• Basic Kruskal’s (Demo)
• Optimized Kruskal’s (Demo)
• Kruskal's vs. Prim's
• Kruskal's Algorithm Code and 

Runtime

https://www.youtube.com/watch?v=OetLdLoEbKQ&list=PL8FaHk7qbOD7SvlWei_-neNmgmXzJG2ad
https://www.youtube.com/watch?v=OetLdLoEbKQ&list=PL8FaHk7qbOD7SvlWei_-neNmgmXzJG2ad


170 Spoiler: State of the Art Compare-Based MST Algorithms

year worst case discovered by

1975 E log log V Yao

1984 E log* V Fredman-Tarjan

1986 E log (log* V) Gabow-Galil-Spencer-Tarjan

1997 E α(V) log α(V) Chazelle

2000 E α(V) Chazelle

2002 optimal (link) Pettie-Ramachandran

??? E ??? ???

(Slide Courtesy of Kevin Wayne, Princeton University)

https://en.wikipedia.org/wiki/Minimum_spanning_tree#Optimal_algorithm

