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Agenda

● Review: Binary and Hexadecimal
● Representing Data using Binary

○ ASCII
● Binary Mathematics
● Integer representations

○ Unsigned numbers
○ Sign-Magnitude
○ Bias
○ Two’s Complement
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Binary

● A system of storing data using just two digits: 1 and 0.
● Everything in a computer is ultimately stored in binary (high voltage wire = 1, 

low voltage wire = 0)
● Generally rooted in the mathematical concept of binary (as a base 2 system 

of representing numbers)
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Analogous System: Decimal

● A system of storing numbers using ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
● Numbers get written using multiple digits, with every integer having a unique 

representation: If I write “5678”, this means:
● 5 × 103 + 6 × 102 + 7 × 101 + 8 × 100

103 102 101 100

5 6 7 8
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Binary

● A system of storing numbers using two digits: 0, 1.
● Numbers get written using multiple digits, with every integer having a unique 

representation: If I write “0b1010”, this means:
● 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

● Note: Since we only ever multiply by 1 or 0, we can just write the powers of 2 
that have 1s in them:

○ 0b1010 = 23 + 21

○ As a corollary, every integer can be uniquely expressed as a sum of powers of 2.
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Binary

● A system of storing data using just two digits: 1 and 0.
● Everything in a computer is ultimately stored in binary (high voltage wire = 1, 

low voltage wire = 0)
● Generally rooted in the mathematical concept of binary (as a base 2 system 

of representing numbers)
● Since computers tend to “think” in binary, it is ultimately useful to work with 

values in binary. By convention we prepend any binary value with “0b”
○ Ex. 0b11 means 3, while 11 means 0b1011
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Challenges with using Binary

● Conversion from binary to decimal and back is generally time consuming
● Ex. To convert 83 to binary:

○ 83 is greater than 26 = 64, but less than 27 = 128
○ 83 = 1 × 26 + 19
○ 83 = 26 + 24 + 3
○ 83 = 26 + 24 + 21 + 1
○ 83 = 26 + 24 + 21 +20

○ 83 = 0b1010011
● As such, it is generally a good idea to have memorized a few 

binary-to-decimal conversions:
○ Numbers 0 through 15
○ Select powers of 2
○ Approximations for various powers of 2
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Useful Numbers to Memorize

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1024

211 2048

212 4096

213 8192

214 16384

215 32768

216 65536

Decimal Binary

0 0b0000

1 0b0001

2 0b0010

3 0b0011

4 0b0100

5 0b0101

6 0b0110

7 0b0111

Decimal Binary

8 0b1000

9 0b1001

10 = 0xA 0b1010

11 = 0xB 0b1011

12 = 0xC 0b1100

13 = 0xD 0b1101

14 = 0xE 0b1110

15 = 0xF 0b1111

Powers of 2
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Binary SI-prefixes

● Note: 210 = 1024 is extremely close to 1000. There’s absolutely no good 
reason for this; the numbers just happened to line up nicely

● On the plus side, this means that we can approximate large powers of 2 in 
decimal

○ Ex. 232 = 230 × 22

○ = (210)3 × 4
○ ≈ 4 × (1000)3

○ ≈ 4 billion
○ Actual value is 4,294,967,296, ~7% off

● This also gets used in binary SI prefixes
● “Kibi, Mebi, Gibi”... instead of “Kilo, Mega, Giga”

○ Ex. 512 TiB = 512 Tebibytes = 249 bytes.
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Binary

● A system of storing data using just two digits: 1 and 0.
● Everything in a computer is ultimately stored in binary (high voltage wire = 1, 

low voltage wire = 0)
● Generally rooted in the mathematical concept of binary (as a base 2 system 

of representing numbers)
● Since computers tend to “think” in binary, it is ultimately useful to work with 

values in binary. By convention we prepend any binary value with “0b”
● Generally too unwieldy to use directly, so binary data is often written using 

hexadecimal or octal
○ Binary numbers use almost 3 times as many digits as decimal, and it’s painful to read long 

binary strings, such as: 0b0101 0000 0110 0001 0110 1001 0110 1110
○ By convention, we often add spacing to long digit strings to help read them 11



CS 61C Spring 2024

Hexadecimal

● A system of storing numbers using 16 digits: 0123456789ABCDEF
● Numbers get written using multiple digits, with every integer having a unique 

representation: If I write “0x87”, this means:
● 8 × 161 + 7 × 160

161 160

8 7
12
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Converting Hexadecimal to Binary

● Base 16 is specifically chosen because 16 = 24

● This makes conversion to binary very easy:
○ 0x87 = 8 × 161 + 7 × 160

○ = 0b1000 × 24 + 0b0111 × 20

○ = 0b1000 0000 + 0b0111
○ = 0b1000 0111

● Conclusion: To convert from hexadecimal to binary:
○ Convert each digit separately to binary
○ Concatenate the results

● To convert from binary to hexadecimal
○ Split the data into sets of 4 digits (prepending 0s to get a multiple of 4 digits)
○ Convert each set of 4 digits into its corresponding hex digit

● Octal is Base 8, which does the same, but using 3 bits at a time instead.
13
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Hexadecimal

● In this course, hex is ALWAYS used as a proxy for binary; we write a hex 
value for brevity and readability, but the intent is that of the underlying binary.

● Hexadecimal values are prepended with the “0x” prefix. All other bases not 
mentioned don’t have a specific prefix, but instead have the base written as a 
subscript.

○ Ex. 0x14 == 0b10100 == 20
○ Ex. 435 (or 43_5) == 4 × 51 + 3 × 50 == 23

● Hex to decimal or decimal to hex is about as difficult as binary to decimal.
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Agenda

● Review: Binary and Hexadecimal
● Representing Data Using Binary

○ ASCII
● Binary Mathematics
● Integer representations

○ Unsigned numbers
○ Sign-Magnitude
○ Bias
○ Two’s Complement
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Representing Data using Binary

● What we’ve discussed so far is the definition of binary from a mathematical 
perspective

● From the computer’s perspective, all it sees is a cluster of wires.
○ When we ask a computer to “do math”, all the computer sees is a set of wires whose values 

get “transformed” by being sent through a bunch of transistors. The computer doesn’t 
inherently know the meaning assigned to that data, so it doesn’t even know that it’s computing 
something.

● As such, whenever we deal with data in a computer, it’s up to the human 
creating the computer to:

○ Assign some meaning to each binary state
○ Put together some transistors so that the transformation induced acts equivalently to 

meaningful operations, ideally with intuitive edge case handling.
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Representing Data using Binary

● Anything that we put in memory gets stored using some number of bits (e.g. a 
1-bit boolean, an 8-bit integer)

● Each possible sequence of 1s and 0s (bitstring) can get assigned to at most 
one meaning

● In general, if we use n bits in our data object, we can represent up to 2n 
different bitstrings, and therefore 2n different meanings

○ 2 choices for the first bit × 2 choices for the second bit …
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Example: Boolean Values

● Only two possible states: TRUE and FALSE
● Can be stored in 1 bit

○ Assign “1” to mean TRUE, and “0” to mean FALSE
● Meaningful operators: OR, AND, NOT, XOR

18
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Example: Boolean Values

● Only two possible states: TRUE and FALSE
● Can be stored in 1 bit

○ Assign “1” to mean TRUE, and “0” to mean FALSE
● Meaningful operators: OR, AND, NOT, XOR

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x NOT x

0 1

1 0

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0
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Example: ASCII

● There’s no “natural” way to assign bitstrings to characters
● Several options exist to map characters to bits

○ ASCII, UTF-8, UTF-32, Morse Code, Braille
○ For this class, we'll focus on ASCII

● In ASCII standard, each character uses 7 bits of data
● The 27=128 different bitstrings correspond to 128 common meanings; 

lowercase letters, uppercase letters, numbers, punctuation, spacing, and 
control characters

● The next slide will have a shortened version of the ASCII table; this will be 
provided whenever ASCII translations are needed.
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ASCII table

21
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Example: DNA Segments

● Each DNA base is one of A, C, T, or G
● Can represent a single DNA base with 2 bits

○ A = 00, C = 01, T = 10, G = 11
● How to represent whole genomes (say, of 

100,000 DNA bases)?
○ Idea: Express it as an array of bases
○ In total, we can represent 100,000 DNA bases using 

200,000 bits of data
● Example operator: Convert to the opposite DNA 

base
○ Using the above encoding scheme, can be implemented 

by taking the NOT of the top bit

Input Output

A T

C G

T A

G C

22
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Representing Data using Binary

● Anything that we put in memory gets stored using some number of bits (e.g. a 
1-bit boolean, an 8-bit integer)

● Each possible bitstring can get assigned to at most one meaning
● In general, if we use n bits in our data object, we can represent up to 2n 

different bitstrings, and therefore 2n different meanings
● Generally inefficient to work at the individual bit level. It’s often easier to add 

additional “0” bits to any data value up to the nearest multiple of 8 bits (so that 
each object is a whole number of bytes long).

● Ex. ASCII chars are normally given 8 bits instead of just 7.
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Example: File Permissions

● In a computer file system, keeps track of what a user is allowed to do with a 
file

● Generally composed of 9 True/False values
○ 3 levels of security with different permissions
○ Read/Write/Execute permissions

● Can theoretically be saved as 9 different Booleans
● However, if we use 4 bytes per Bool, that would take 36 bytes
● Solution: Treat a 32-bit integer as an array of 32 bits, and use 9 of them to 

store the relevant permissions.
○ Use bitwise operations to modify individual bits within this integer

● Saves the file permissions as a single 32-bit integer.
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Agenda

● Review: Binary and Hexadecimal
● Representing Data using Binary

○ ASCII
● Binary Mathematics
● Integer representations

○ Unsigned numbers
○ Sign-Magnitude
○ Bias
○ Two’s Complement

● ASCII
● Summary
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Representing Nonnegative Integers

● Problem: There are infinitely many integers. Making a representation that 
could represent any integer would require infinitely many bits.

● Solution 1: Treat an integer as an array of digits, extending the array as 
needed to save the entire integer.

○ Ex. Decimal numbers in math
○ Ex. Python’s large integer primitive
○ Would require variable amounts of time to compute operations

● Solution 2: Only allow for numbers up to a certain max value, using a fixed 
number of bits.

○ Ex. C’s integer primitive
○ Requires edge case handling when math results exceed the maximum value
○ Often referred to as an n-bit unsigned integer, where we allow numbers from 0 to 2n-1 (ex. 

8-bit unsigned int goes from 0 to 255)
○ To write an n-bit number, we always write out the full n bits, including leading zeros
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Bitwise Operations

● Common Bitwise Operations (C syntax): &, |, ~, ^, <<, >>
● The first four correspond to the logical operators AND, OR, NOT, 

and XOR.
○ There’s no real decimal meaning to these operations, but they tend to be 

useful when working with raw binary data.
○ Note that C defines ^ as XOR, not exponentiation!

● To run these operations: 
○ Convert the numbers to binary 
○ Run the corresponding logical operator on each pair of bits (1=TRUE, 

0=FALSE)
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Examples: Bitwise Operations

● Let’s assume we’re working with 4-bit integers. Compute:
○ 6 & 5
○ 6 | 5
○ 6 ^ 5
○ ~6

6 = 0b 0 1 1 0

5 = 0b 0 1 0 1

28
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Examples: Bitwise Operations

● Let’s assume we’re working with 4-bit integers. Compute:
○ 6 & 5
○ 6 | 5
○ 6 ^ 5
○ ~6

6 = 0b 0 1 1 0

5 = 0b 0 1 0 1

6 & 5 = 0b 0 1 0 0 =4
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Examples: Bitwise Operations

● Let’s assume we’re working with 4-bit integers. Compute:
○ 6 & 5
○ 6 | 5
○ 6 ^ 5
○ ~6

6 = 0b 0 1 1 0

5 = 0b 0 1 0 1

6 & 5 = 0b 0 1 0 0 =4

6 | 5 = 0b 0 1 1 1 =7
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Examples: Bitwise Operations

● Let’s assume we’re working with 4-bit integers. Compute:
○ 6 & 5
○ 6 | 5
○ 6 ^ 5
○ ~6

6 = 0b 0 1 1 0

5 = 0b 0 1 0 1

6 & 5 = 0b 0 1 0 0 =4

6 | 5 = 0b 0 1 1 1 =7

6 ^ 5 = 0b 0 0 1 1 =3
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Examples: Bitwise Operations

● Let’s assume we’re working with 4-bit integers. Compute:
○ 6 & 5
○ 6 | 5
○ 6 ^ 5
○ ~6

6 = 0b 0 1 1 0

5 = 0b 0 1 0 1

6 & 5 = 0b 0 1 0 0 =4

6 | 5 = 0b 0 1 1 1 =7

6 ^ 5 = 0b 0 0 1 1 =3

~6 = 0b 1 0 0 1 =9
32



CS 61C Spring 2024

Bitwise Operations

● C gives access to the following bitwise operations: &, |, ~, ^, <<, >>
● The first four correspond to the logical operators AND, OR, NOT, and XOR.

○ There’s no real decimal meaning to these operations, but they tend to be useful when working 
with raw binary data.

○ Note that C defines ^ as XOR, not exponentiation!
● To run these operations: 

○ Convert the numbers to binary 
○ Run the corresponding logical operator on each pair of bits (1=TRUE, 0=FALSE)

● << and >> are left shift and right shift, respectively
○ Left shift: Convert to binary, then move all bits left, appending 0s as needed
○ Right shift (logical): Convert to binary, then move all bits right, prepending 0s as needed
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Shifts

● 0b1011 0100 << 3
● 0b1011 0100 >> 2

0 0 0 1 0 1 1 0 1 0 0 0 0 0b1011 0100
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Shifts

● 0b1011 0100 << 3
● 0b1011 0100 >> 2

0 0 0 1 0 1 1 0 1 0 0 0 0 0b1011 0100

1 0 1 1 0 1 0 0 0 0 0 0 0
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Shifts

● 0b1011 0100 << 3
● 0b1011 0100 >> 2

0 0 0 1 0 1 1 0 1 0 0 0 0 0b1011 0100

1 0 1 1 0 1 0 0 0 0 0 0 0 0b1010 0000
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Shifts

● 0b1011 0100 << 3
● 0b1011 0100 >> 2

0 0 0 1 0 1 1 0 1 0 0 0 0 0b1011 0100

1 0 1 1 0 1 0 0 0 0 0 0 0 0b1010 0000

0 0 0 0 0 1 0 1 1 0 1 0 0
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Shifts

● 0b1011 0100 << 3
● 0b1011 0100 >> 2

0 0 0 1 0 1 1 0 1 0 0 0 0 0b1011 0100

1 0 1 1 0 1 0 0 0 0 0 0 0 0b1010 0000

0 0 0 0 0 1 0 1 1 0 1 0 0 0b0010 1101
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Decimal Analogue: Shifts

● For this slide, we’ll use <<10 and >>10 to refer to decimal shifts instead of our 
normal binary shifts. 

● 1234 <<10 1 means: 
○ Move all the digits one spot left, and add a zero to the end
○ 1234 -> 12340
○ Equivalent to multiplying by 10

● 1234 >>10 1 means:
○ Move all the digits one spot right, cutting off the last digit
○ 1234 -> 123
○ Equivalent to dividing by 10 (rounding down)

● In general:
○ Decimal left shifting by n multiplies a number by 10n

○ Decimal right shifting by n divides a number by 10n, rounding down.
39
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Bitwise Operations

● C gives access to the following bitwise operations: &, |, ~, ^, <<, >>
● The first four correspond to the logical operators AND, OR, NOT, and XOR.

○ There’s no real decimal meaning to these operations, but they tend to be useful when working 
with raw binary data.

○ Note that C defines ^ as XOR, not exponentiation!
● To run these operations: 

○ Convert the numbers to binary 
○ Run the corresponding logical operator on each pair of bits (1=TRUE, 0=FALSE)

● << and >> are left shift and right shift, respectively
○ Left shift: Convert to binary, then move all bits left, appending 0s as needed
○ Right shift (logical): Convert to binary, then move all bits right, prepending 0s as needed
○ Left shift: Equivalent to multiplying by a power of 2
○ Right shift (logical): Equivalent to dividing by a power of 2
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Mathematical Operations

● C also allows for mathematical operators: +, -, *, /, %, <, >, ==, etc.
○ These operators are designed to match the behavior of decimal math as much as possible, so 

it’s always possible to do math with these operators by first converting to decimal, doing the 
operation, then converting back.

○ Since it takes time to convert to decimal, it’s often easier to do the math entirely in binary. 
○ The general approach for these is to follow a “grade-school algorithm”, but in binary instead of 

decimal.
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Example: Addition

Decimal

       
 31415
+27128
      

Binary

           
 0b1001
+0b0011
 0b    
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Example: Addition

Decimal

    1   
 31415
+27128
     3 

Binary

           
 0b1001
+0b0011
 0b    
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Example: Addition

Decimal

    1   
 31415
+27128
    43 

Binary

           
 0b1001
+0b0011
 0b    
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Example: Addition

Decimal

    1   
 31415
+27128
   543 

Binary

           
 0b1001
+0b0011
 0b    
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Example: Addition

Decimal

    1   
 31415
+27128
  8543 

Binary

           
 0b1001
+0b0011
 0b    
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Example: Addition

Decimal

    1   
 31415
+27128
 58543 

Binary

           
 0b1001
+0b0011
 0b    
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Example: Addition

Decimal

    1   
 31415
+27128
 58543 

Binary

     1     
 0b1001
+0b0011
 0b   0
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Example: Addition

Decimal

    1   
 31415
+27128
 58543 

Binary

    11     
 0b1001
+0b0011
 0b  00
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Example: Addition

Decimal

    1   
 31415
+27128
 58543 

Binary

    11     
 0b1001
+0b0011
 0b 100
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Example: Addition

Decimal

    1  
 31415
+27128
 58543

Binary

    11     
 0b1001
+0b0011
 0b1100
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Example: Multiplication

Decimal

  31415
x   123
  

Binary

 0b001001
x0b000011
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Example: Multiplication

Decimal

  31415
x   123
  94245

Binary

 0b001001
x0b000011
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Example: Multiplication

Decimal

  31415
x   123
  94245
 62830

Binary

 0b001001
x0b000011
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Example: Multiplication

Decimal

  31415
x   123
  94245
 62830
31415

Binary

 0b001001
x0b000011
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Example: Multiplication

Decimal

  31415
x   123
  94245
 62830
31415
3864045

Binary

 0b001001
x0b000011
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Example: Multiplication

Decimal

  31415
x   123
  94245
 62830
31415
3864045

Binary

 0b001001
x0b000011
 0b  1001
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Example: Multiplication

Decimal

  31415
x   123
  94245
 62830
31415
3864045

Binary

 0b001001
x0b000011
 0b  1001
 0b 1001

58



CS 61C Spring 2024

Example: Multiplication

Decimal

  31415
x   123
  94245
 62830
31415
3864045

Binary

 0b001001
x0b000011
 0b  1001
 0b 1001
 0b011011
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Mathematical Operations

● C also allows for mathematical operators: +, -, *, /, %, <, >, ==, etc.
● We only can represent a finite number of integers: need to handle cases 

where “correct” calculation yields a number outside range, ideally in a way 
that feels “natural”.

● Three main cases (assuming an 8-bit unsigned integer):
○ Going too high

■ 200 + 200
■ 100 << 2
■ Called overflow

○ Going too low
■ 100 - 200
■ Also called overflow

○ Fractional result
■ 10 / 3
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Mathematical Operations

● For fractional results: Treat division as floor division (similar to the // operator 
in Python)

○ 10 / 3 == 3
●  For numbers too big or too small: “wrap around” so that the largest number 

representable + 1 becomes the smallest number
○ Ex. In an 8-bit unsigned integer, 255+1 == 0

● Equivalent definition: Take the result mod 2n, or take only the lowest n bits of 
the number.

○ 200 + 200 is 400, which is (400-256 = 144) mod 256. Thus, 200 + 200 == 144
○ 100 << 2 == 144. Note that 100 == 0b0110 0100, and 144 == 0b1001 0000, matching the 

left shift behavior described earlier
○ 100 - 200 == -100, which is (-100+256 = 156) mod 256. Thus, 100 - 200 == 156
○ Note that all of the above values are correct only for math with 8-bit unsigned integers 61
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Agenda

● Review: Binary and Hexadecimal
● Representing Data using Binary

○ ASCII
● Binary Mathematics
● Integer representations

○ Unsigned numbers
○ Sign-Magnitude
○ Bias
○ Two’s Complement
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Goals for representation schemes

An ideal representation scheme is:

● Useful
● Efficient
● Intuitive
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Goals for representation schemes: Useful

In order to be useful, a representation scheme should be able to represent all the 
numbers we want to use.

● Ex. If you're trying to count sand grains on a beach, you probably want to be 
able to represent really large integers, but you probably don't need to 
represent negative numbers.

● Different subject matters need different value sets, so we often have several 
different options with various trade-offs
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Goals for representation schemes: Efficient

Two major types of efficiency

● Memory use: As many possible bitstrings correspond to valid data values as 
possible
○ Ideal goal: Make it so that every bitstring corresponds to a different, valid 

data value
○ Ex. If we have an 8-bit scheme, try to represent 256 different numbers

● Operator cost: The operators we define are simple to make in circuitry, and 
require few transistors
○ Ideal goal: If we can reuse an existing circuit, then we don’t need to add 

any additional circuitry!
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Goals for representation schemes: Intuitive

If a system’s too complicated, no one will use it. 

● Often goes together with small operator cost, as well as adaptability to other 
systems

● Though if you manage to abstract away a lot of the complexity, you can get 
away with a less-intuitive system…
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Unsigned Numbers

● The unsigned number system is the system that we’ve been describing up to 
now:

○ For n bits of data, we represent 0~(2n-1), translating our value into its (mathematical) binary 
value.

○ Arithmetic operations use modular arithmetic to account for overflows
○ Called “unsigned” because we don’t handle negative numbers, so we don’t account for 

positive/negative sign
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Analysis: Unsigned Numbers

● Useful?
○ Yes; you often need to store positive/nonnegative integers in your code

● Memory Efficient?
○ Yes; every possible bitstring yields a different, valid integer

● Operator Efficient?
○ Somewhat: Bitwise operations, comparators, and addition/subtraction only require O(n) 

transistors to construct. Multiplication, division, and modulo arithmetic require O(n2) 
transistors, so they’re generally slower

■ For this reason, some languages like RISC-V don’t support multiplication/division 
operators in their base instruction set.

● Intuitive?
○ Yes; most aspects of this system are directly analogous to decimal math
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Example: Unsigned Numbers

● The unsigned number system is the system that we’ve been describing up to 
now:

○ For n bits of data, we represent 0-(2n-1), translating our value into its (mathematical) binary 
value.

○ Arithmetic operations use modular arithmetic to account for overflows
○ Called “unsigned” because we don’t handle negative numbers, so we don’t account for 

positive/negative sign
● Often used in programs when you don’t need negative numbers, or when 

dealing with bitwise operations
● 8-bit unsigned number: values from 0-255, arithmetic done mod 256
● 16-bit unsigned number: values from 0-65535, arithmetic done mod 65536
● 32-bit unsigned number: values from 0-~4 billion
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Problem: What if we want to handle negative numbers?

● Need to specify some encoding that includes negative values as well as 
positive values

● Immediately, there’s one issue: we won’t be able to represent as many 
positive numbers as before

○ With an unsigned number, every possible bitstring was assigned a nonnegative number. If we 
want to represent negative numbers, we’ll have to replace some positive numbers, so our max 
value will be smaller

● For most signed systems, we want to have about as many positive numbers 
as negative numbers
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Sign-Magnitude Numbers

● Main idea: In decimal, we write negative numbers by first writing a “-” sign, 
then the absolute value of that number.

○ Ex. “-1234”
○ For completeness, let’s also imagine that we use “+” for positive numbers, as in “+1234”

● Binary equivalent:
○ Use the first bit of the data to store the sign (1 is negative, 0 is positive), then use the 

remaining bits to store the absolute value of the number

Sign Magnitude

- 23

0b1 0 0 1 0 1 1 1
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Analysis: Sign-Magnitude Numbers

● Useful?
○ Yes; negative numbers get stored, with about the same number of negative values as positive

● Memory Efficient?
○ Somewhat; the number 0 gets two different representations (0b0000 0000 and 

0b1000 0000), but otherwise, every value is unique
● Operator Efficient?

○ No: comparators and addition/subtraction require additional handling for the sign bit
● Intuitive?

○ Yes; this is how we write numbers in decimal
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Sign-Magnitude Numbers

● Main idea: In decimal, we write negative numbers by first writing a “-” sign, 
then the absolute value of that number.

○ Ex. “-1234”
○ For completeness, let’s also imagine that we use “+” for positive numbers, as in “+1234”

● Binary equivalent:
○ Use the first bit of the data to store the sign (1 is negative, 0 is positive), then use the 

remaining bits to store the absolute value of the number
● Relatively uncommon as-is, but can be used as a component/starting point for 

more complicated systems, since as a base, it’s fairly versatile.
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Bias Numbers

● Main idea: We have a system that can represent this:

0

74



CS 61C Spring 2024

Bias Numbers

● Main idea: We have a system that can represent this:

● We want to represent this: 0

0
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Bias Numbers

● Main idea: We have a system that can represent this:

● We want to represent this:

● “Shift” the numbers so that they center on zero
● Formally:

○ Define a “bias”
○ To interpret stored binary: Read the data as an unsigned number, then add the bias
○ To store a data value: Subtract the bias, then store the resulting number as an unsigned 

number

0

0
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Examples: Bias Numbers

● For the following example, let’s assume that we have a bias of -127 with an 8 
bit number

● If we store the binary 0b0000 1001, we mean:
○ 0b0000 1001 as an unsigned integer is 9. We then add the bias (-127) to get our value -118.
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0

Binary 0b 0000 1001 = unsigned 9

Means 9-127 = -118
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Examples: Bias Numbers

● If we want to store the number -27:
○ We subtract the bias to get a number in the range of an unsigned integer:
○ -27 - (-127) = 100
○ We then save 100 = 0b0110 0100 as an unsigned number
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0

Stored as unsigned -27+127 = 100

Number that means -27
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Examples: Bias Numbers

Smallest number: 0b0000 0000 = -127

Largest number: 0b1111 1111 = (255 - 127) = 128
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Analysis: Bias Numbers

● Useful?
○ Yes: negative numbers get stored, with about the same number of negative values as positive
○ By choosing different values for the bias, we can represent different ranges, even those not 

centered at 0.
● Memory Efficient?

○ Yes: Every bitstring corresponds to a unique value
● Operator Efficient?

○ Somewhat: Comparators stay the exact same as the unsigned numbers, since we’re just 
adding the same number to all bit patterns

○ Any arithmetic operations become significantly harder to do
● Intuitive

○ Somewhat: It makes reasonable sense, but it’s harder to keep track of an extra parameter in 
the system
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Bias Numbers

● “Shift” the numbers so that they center on zero
● Formally:

○ Define a “bias”
○ To interpret stored binary: Read the data as an unsigned number, then add the bias
○ To store a data value: Subtract the bias, then store the resulting number as an unsigned 

number
● Mainly used when data is only intended to be compared, not to be 

added/subtracted
● Really useful when the range of common values isn’t centered on zero

○ Real world example: The temperatures we see day-to-day often stay in the range of 273 K to 
323 K. As such, we often think of temperatures with a bias of +273; this forms the Celsius 
system. Most of the time, we don’t “add” temperatures together, and just think in terms of 
“hotter” or “colder”. Only in chemistry/scientific fields do we often add or multiply temperatures; 
this is why Kelvin tends to be preferred in scientific environments.
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Two’s Complement Numbers

● With unsigned numbers, we noted that overflows got handled by working mod 2n.
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Two’s Complement Numbers

● Why not handle negative numbers the same way?
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Two’s Complement Numbers

● In binary:
○ If the leading bit of the number is 0, interpret the number as an unsigned integer (positive 

numbers)
○ If the leading bit of the number is 1, interpret the number as an unsigned integer, then subtract 

2n (negative numbers)
● Result: The 2’s complement value of a bitstring is always equivalent to the 

unsigned value (mod 2n)
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Example: Two’s Complement Numbers

● 0b0001 0001
○ The leading digit is 0, so we take the unsigned value of this number, which is 17. Thus, this 

bitstring means 17.
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Example: Two’s Complement Numbers

● 0b1110 1111
○ The leading digit is 1, so we take the unsigned value, and subtract 28 = 256. The unsigned 

value is 239, so this bitstring means 239 - 256 = -17
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Example: Two’s Complement Numbers

● 0b1110 1111
○ The leading digit is 1, so we take the unsigned value, and subtract 28 = 256. The unsigned 

value is 239, so this bitstring means 239 - 256 = -17
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Example: Two’s Complement Numbers

There’s an easy shortcut for negating numbers in two’s complement: In order to 
multiply a number by -1, flip the bits, and add 1.

● Ex. The number 17 is represented by the binary 0b0001 0001. If we flip the bits 
of this, we get 0b1110 1110. If we then add 1, we get 0b1110 1111, which is the 
bitstring that stores -17 in two’s complement.

● This algorithm works both ways. For example, if I start with 0b1110 1111, I can 
flip the bits to get 0b0001 0000, then add 1 to get 0b0001 0001 = 17, which is the 
negation of the -17.

● It’s often useful to convert values to binary through the above sequence, but 
the properties of this signed number system stem from the former definition.

88



CS 61C Spring 2024

Analysis: Two’s Complement Numbers

● Useful?
○ Yes: negative numbers get stored, with about the same number of negative values as positive

● Memory Efficient?
○ Yes: Every bitstring corresponds to a unique value

● Operator Efficient?
○ Yes! This representation system is equivalent to unsigned numbers mod 2n, and we’ve defined 

our operators by taking the result mod 2n. As a result, addition, subtraction, and multiplication 
work exactly the same as with unsigned numbers, even using the same circuit. This makes 
two’s complement extremely efficient to implement if you’ve already implemented unsigned 
numbers.

● Intuitive
○ Somewhat: “Flip the bits and add one” is a fairly useful mnemonic that allows humans to easily 

translate two’s complement numbers. The underlying math behind this system is fairly 
complex, though, so it’s somewhat unintuitive why this works.
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Math Aside (e.g. How Math 113 Applies to CS)

● Modular arithmetic forms what's known as a ring; in particular the quotient 
ring Z/nZ

● One property of quotient rings is that the choice of representative is irrelevant 
to the defined operations.

○ Unsigned numbers: We choose as representative the smallest nonnegative element
○ 2's Complement: We choose as representative the number closest to zero (with one extra 

negative number)
● Since we don't change the coset-bitstring mapping, we can use the same 

arithmetic circuits for operations well-defined on the ring
○ Addition, Subtraction and Multiplication, but NOT comparisons or division
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Two’s Complement Numbers

● In binary:
○ If the leading bit of the number is 0, interpret the number as an unsigned integer (positive 

numbers)
○ If the leading bit of the number is 1, interpret the number as an unsigned integer, then subtract 

2n (negative numbers). Alternatively, flip the bits and add one to get the magnitude of the 
number, and interpret the number as a negative number.

● Because Two's Complement is equivalent mod 2n to unsigned numbers, we 
can reuse the unsigned math circuits to implement 2's complement 
operations. 

● Two’s complement is generally the implementation of choice for signed 
numbers. 

○ From now on, we may sometimes say “signed number” without specifying the exact format. 
Unless otherwise stated, this refers to a two’s complement representation. 91


