Lab 2: C Debugging

Deadline: Tuesday, January 30, 11:59:59 PM PT

For this lab, please complete the exercises in the order listed. The exercises may depend on each
other.

Lab Slides [

Setup

You must complete this lab on the hive machines. See Lab O for a refresher on using them.

In your labs directory, pull the files for this lab with:
git pull starter main
If you get an error like the following:

fatal: 'starter' does not appear to be a git repository
fatal: Could not read from remote repository.

make sure to set the starter remote as follows:

git remote add starter https://github.com/61c-teach/sp24-lab-starter.git

and run the original command again.

If you run into any git errors, please check out the common errors page.

Review: Pointers

A pointer is a variable whose value is the memory address of another variable. Note that every
variable declaration is always located in a memory, where every element has a corresponding
address. Think of it like an array: every variable value is contained on a specific array index (address),
and the pointer to that variable is another variable within that same array that contains the index
(address) of the variable it is pointing at.

Consider the following example:

int main() {
int my_var = 20;
int* my_var_p;
my_var_p = &my_var;

For the first line, we declared an int variable called my_var which is then assigned with a value of 20.
That value of 20 will be placed somewhere in the memory.

For the second line, we declared an int pointer variable called my_var_p. Note that you can also write
int *my_var_p, where the asterisk glued to the variable name instead of the variable type.

For the third line, we assigned my_var_p to have a value that is equal to the address of my_var. This is
done by using the & operator before the my_var variable. At this point, the value contained in the
variable my_var_p is the address in memory of the variable my_var.

Note that whenever you want to change the value of my_var, you could do it by changing my_var
directly.

my_var += 2;
Alternatively, you could also change the value of my_var by dereferencing my_var_p
*my_var_p += 2;
In a nutshell, &x gets the address of x, while *x gets the contents at address x.
Here's a more complete example:
int main() {
int my_var = 20;
int* my_var_p;
my_var_p = &my_var;
printf("Address of my_var: %p\n", my_var_p);
printf("Address of my_var: %p\n", &my_var);
printf("Address of my_var_p: %p\n", &my_var_p);
*my_var_p += 2;
printf("my_var: %d\n", my_var);

printf("my_var: %d\n", *my_var_p);

A sample execution of this code gave out the following:

Address of my_var: ex7fffebafb32c
Address of my_var: Ox7fffebaftb32c
Address pf my_var_p: 0x7fffebafb330
my_var: 22

my_var: 22

The first line prints out the value of my_var_p, which was assigned to the address of the variable

my_var.
The second line shows that my_var_p is indeed equal to &my_var, the address of the variable my_var.

The third line prints out the address of my_var_p. Note that since my_var_p is in fact a variable itself
(the variable type is an int pointer), therefore it has to be placed somewhere in the memory as well.
Thus, printing out &my_var_p allows us to see where in the memory the my_var_p variable is located.

After the first three print outs, we changed the value of my_var indirectly using *my_var_p. Since
my_var_p is a pointer to my_var (i.e. my_var_p is the address of my_var), performing *my_var_p allows us
to modify the contents at the address in my_var_p.

The fourth line shows that we have indeed modified my var, since the value is now 22.

The fifth line confirms that *my_var_p is indeed equal to my_var.

» What happens if we did the following: my_var_p += 27

» After doing my_var_p += 2 earlier, what is the value of &my_var_p?

» After doing my_var_p += 2 earlier, what happens then if we try to print the value of *my_var_p?

Exercise 1: Pointers to Stack vs Heap

Edit ex1_ptr_heap_stack.c using your editor of choice and fill in the blanks. Feel free to refer back to
the pointer review section if you are stuck.

Compile and run the program and check that the output matches what you expect. You will see a
compiler warning. What does it mean?

Read the output of gcc. Note that it throws an error about the address of a stack variable being
returned. Similarly, the output of the program should show address of the stack variable as (nil),
indicating that it is not usable. This is because x cannot be accessed outside of the function
int_on_stack using a pointer. In the future, make sure to allocate memory on the heap if you'd like to
use it later.

Exercise 2: Compiler Warnings and Errors

Compiler warnings are generated to help you find potential bugs in your code. Make sure that you fix
all of your compiler warnings before you attempt to run your code. This will save you a lot of time
debugging in the future because fixing the compiler warnings is much faster than trying to find the
bug on your own.

1. Read over the code in ex2_compiler warnings.c.

2. Compile your program with gcc -0 ex2_compiler_warnings ex2_compiler_warnings.c. You
should see 3 warnings.

3. Read the first line of the first warning. The line begins with ex2_compiler_warnings.c:13:22,
which tells you that the warning is caused by line 13 of ex2_compiler_warnings.c. The warning
states that the program is trying to assign a char to a char *.

4. Open ex2_compiler_warnings.c and navigate to the line that's causing the warning. It is trying to
assign a char to a char *. The compiler has pointed this out as a potential error because we
should not be assigning a char to a char *.

5. Fix this compiler warning.

6. Recompile your code. You can now see that this warning does not appear anymore and there
are 2 warnings left.

7. Fix the remaining compiler warnings in ex2_compiler_warnings.c.

What is GDB?

Here is an excerpt from the GDB website [7:

GDB, the GNU Project debugger, allows you to see what is going on ‘inside' another program while it
executes -- or what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch bugs
in the act:

e Start your program, specifying anything that might affect its behavior.
e Make your program stop on specified conditions.
e Examine what has happened, when your program has stopped.

e Change things in your program, so you can experiment with correcting the effects of one bug
and go on to learn about another.

In this class, we will be using CGDB [4' which provides a lightweight interface to gdb to make it easier
to use. CGDB is already installed on the hive machines, so there is no installation required. The
remainder of this class uses CGDB and GDB interchangeably.

Here's a GDB reference card.

If you run into any issues with GDB, see the Common GDB Errors section below

Exercise 3: Intro to GDB

In this section, you will learn the GDB commands start, step, next, finish, print, and quit. This
section will resolve bug(s) along the way. Make sure to fix the bug(s) in the code before moving on.

The table below is a summary of the above commands

Command | Abbreviation | Description

start N/A begin running the program and stop at line 1 in main

step S execute the current line of code (this command will step into
functions)

next n execute the current line of code (this command will not step into
functions)

finish fin executes the remainder of the current function and returns to the

calling function

print [arg] | p prints the value of the argument

quit q exits gdb

You should be filling in ex3_commands . txt with the corresponding commands. Please only use the
commands from the table above. For correctness, we will be checking the output of your
ex3_commands.txt against a desired output. We'd recommend opening two SSH windows so you
can have the commands file and the cgdb session at the same time. Even though you are adding to
ex3_commands. txt, please check your work by actually running these commands in cgdb.

1. Compile your program with the -g flag. This will include additional debugging information in the

executable that CGDB needs.

gcc -g -o pwd_checker test_pwd_checker.c pwd_checker.c

2. Start cgdb. Note that you should be using the executable (pwd_checker) as the argument, not the
source file (pwd_checker.c).

cgdb pwd_checker

You should now see CGDB open. The top window displays our code and the bottom window
displays the console.

For each of the following steps, add the CGDB commands you execute to ex3_commands.txt. Each
command should be on its own line. Each step below will require one or more CGDB commands.

1. Start your program so that it's at the first line in main, using one command.

2. The first line in main is a call to printf. We do not want to step into this function. Step over this
line in the program.

3. Step until the program is on the check_password call. Note that the line with an arrow next to it
is the line we're currently on, but has not been executed yet.

. Step into check_password.

. Step into check_lower.

. Print the value of password (password is a string).

. Step out of check_lower immediately. Do not step until the function returns.
. Step into check_length.

. Step to the last line of the function.

. Print the return value of the function. The return value should be false.

- O W 0 N oo U1 b

—

. Print the value of length. It looks like 1ength was correct, so there must be some logic issue on
line 24.

12. Quit CGDB. CGDB might ask you if you want to quit, type y (but do not add y to

ex3_commands. txt).

At this point, your ex3_commands.txt should contain a list of commands from the steps above. You
don't need to add anything from the steps below to your ex3_commands. txt.

1. Fix the bug on line 24.
2. Compile and run your code.

3. The program still fails. Open and step through cgdb again, you should see that check_number is
now failing. We will address this in the next exercise.

Exercise 4: More GDB

In this section, you will learn the gdb commands break, conditional break, run, and continue. This
section will resolve bug(s) along the way. Make sure to fix the bug(s) in the code before moving on.

The table below is a summary of the above commands

Command Abbreviation | Description

break [line num or b set a breakpoint at the specified location, use
function name] filename.c:linenum to set a breakpoint in a specific file

Command Abbreviation | Description

conditional break (ex: (ex: b 3if set a breakpoint at the specified location only if a given

break 3 if n==4) n==4) condition is met

run r execute the program until termination or reaching a
breakpoint

continue C continues the execution of a program that was paused

You should be filling in ex4_commands.txt with the corresponding commands. Please only use the
commands from the table above and the table for exercise 2. For correctness, we will be checking
the output of your ex4_commands.txt against a desired output. We'd recommend opening two SSH
windows so you can have the commands file and the cgdb session at the same time. Even though you
are adding to ex4_commands.txt, please check your work by actually running these commands in cgdb.

1. Recompile and run your code. You should see that the assertion number is failing
2. Start cgdb

cgdb pwd_checker

For each of the following steps, add the CGDB commands you execute to ex4_commands.txt. Each
command should be on its own line. Each step below will require one or more CGDB commands.

1. Set a breakpoint in our code to jump straight into the function check_number using the function
name (not the filename or line number). Your breakpoint should not be in check_password.

2. Run the program. Your code should run until it gets to the breakpoint that we just set.

3. Step into check_range.

4. Recall that the numbers do not appear until later in the password. Instead of stepping through all
of the non-numerical characters at the beginning of password, we can jump straight to the point
in the code where the numbers are being compared using a conditional breakpoint. A
conditional breakpoint will only stop the program based on a given condition. The first number
in the password o, so we can set the breakpoint when letter is '0'. Break on line 31 if the
letteris '0’.

We are using the single quote because o is a char.
5. Continue executing your code after it stops at a breakpoint.

6. The code has stopped at the conditional breakpoint. To verify this, print letter.

It should print 48 '@' which is a decimal number followed by it's corresponding ASCII
representation. If you look at an ASCI| table [7, you can see that 48 is the decimal representation
of the character o.

7. Let's take a look at the return value of check_range. Print is_in_range. The result is false. That's
strange. '9' should be in the range.

8. Let's look at the upper and lower bounds of the range. Print lower.
9. Print upper.

10. Ahah! The ASCII representation of lower is \@@e(the null terminator) and the ASCII representation
of upper is \t. It looks like we passed in the numbers @ and 9 instead of the characters '0' and
9l

11. Quit CGDB. CGDB might ask you if you want to quit, type y (but do not add y to

ex4_commands.txt).

At this point, your ex4_commands.txt should contain a list of commands from the steps above. You
don't need to add anything from the steps below to your ex4_commands. txt.

1. Fix the bug.

2. Compile and run your code. There's one more error, which you will find in exercise 5.

Exercise 5: Debug

1. Debug check_upper on your own using the commands you just learned. The function appears to
be returning false even though there's an uppercase letter. Hint: the bug itself may not be in
check_upper itself.

Valgrind

Even with a debugger, we might not be able to catch all bugs. Some bugs are what we refer to as
"bohrbugs”, meaning they manifest reliably under a well-defined, but possibly unknown, set of
conditions. Other bugs are what we call "heisenbugs", and instead of being determinant, they're
known to disappear or alter their behavior when one attempts to study them. We can detect the first
kind with debuggers, but the second kind may slip under our radar because they're (at least in C)
often due to mis-managed memory. Remember that unlike other programming languages, C requires
you (the programmer) to manually manage your memory.

We can use a tool called Valgrind to help catch to help catch "heisenbugs” and "bohrbugs". Valgrind
is a program which emulates your CPU and tracks your memory accesses. This slows down the
process you're running (which is why we don't, for example, always run all executables inside
Valgrind) but also can expose bugs that may only display visible incorrect behavior under a unique
set of circumstances.

Let's take a look at the bork translation program! Bork is an ancient language that is very similar to
English. To translate a word to Bork, you take the English word and add an 'f' after every vowel in the
word.

Let's see if we can understand some Bork. Compile and run bork using the following commands.

gcc -g -0 bork bork.c
./bork hello

An example output is provided below. Note that your output will probably look different.

Input string: "hello"
Length of translated string: 21
Translate to Bork: "hefl2?~?Ul2?~?Uof?~?U"

Hmm, Bork is an old language, but there shouldn't be all of these strange characters. It seems that
perhaps the ancients left some bugs in their program! Shall we embark on a journey to squash bugs
and uncover the true beauty of Bork?

If we take a brief glance at main, we can see that we are taking an input string (src_str) and
translating it to Bork (dest_str). If we scroll to the top, we can see that we have a function (alloc_str)
to allocate space for a string in the heap, a str struct which contains a string and it's length, a
make_str function which will create a str struct and initialize its data and 1en field, and a function to
free our struct's data. There is also a function to concate two strings together and another function to
translate a letter to Bork. Now this is quite a long program to debug.

Wouldn't it be nice if there were a tool that gave us a good first place to look?
Well as it turns out, there are a couple and valgrind is one of them!

Let's run valgrind on our program using the following command.

valgrind ./bork hello

==10170== % Memcheck, a memory error detector

==10170== $ Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==10170== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==10170== Command: ./bork hello

==10170==

==10170== Invalid read of size 1

==10170== at 0x4C34Do4: strlen (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
==10170== by 0x10879F: make Str (bork.c:22)

==10170== by 0x108978: translate_to_bork (bork.c:56)

==10170== by 0x1089F2: main (bork.c:68)

==10170== Address 0x522f041 is @ bytes after a block of size 1 alloc'd

==10170== at Ox4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
==10170== by 0x108781: alloc_str (bork.c:10)

==10170== by ©x10895E: translate_to_bork (bork.c:54)

==10170== by ©x1089F2: main (bork.c:68)

==10170==
==10170== $ Invalid read of size 1

==10170== % at @x4C34D04: strlen (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1linux.so)
==10170== % by ©x10879F: make_Str (bork.c:22)

==10170== % by 0x108952: translate_to_bork (bork.c:51)

==10170== ¢ by ©x1089F2: main (bork.c:68)

==10170== % Address 0x522f0@e2 is @ bytes after a block of size 2 alloc'd

==10170== at Ox4C31BOF: malloc (in /usr/lib/valgrind/vgpreload memcheck-amd64-1inux.so)
==10170== by 0x108781: alloc_str (bork.c:10)

==10170== by 0x10892D: translate_to_bork (bork.c:48)

==10170== by 0x1089F2: main (bork.c:68)

==10170==

Input string: "hello"
Length of translated string: 7
==10170== Invalid read of size 1

==10170== at Ox4C34Do4: strlen (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
==10170== by Ox4E9B4A2: vfprintf (vfprintf.c:1643)

==10170== by Ox4EA2EE5: printf (printf.c:33)

==10170== by 0x108A6F: main (bork.c:74)

==10170== Address 0x522f317 is @ bytes after a block of size 7 alloc'd
==10170== % at ex4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1linux.so)
==10170== % by 0x108781: alloc_str (bork.c:10)

==10170== % by ©x108833: concat (bork.c:32)

==10170== ¢ by Ox108A15: main (bork.c:69)

==10170==

$ Translate to Bork: "hefllof"

==10170==

==10170== HEAP SUMMARY :

==10170== $ in use at exit: 7 bytes in 1 blocks

==10170== ¢ total heap usage: 11 allocs, 10 frees, 1,051 bytes allocated
==10170==

==10170== LEAK SUMMARY :

==10170== % definitely lost: 7 bytes in 1 blocks

==10170== % indirectly lost: © bytes in @ blocks

==10170== $ possibly lost: @ bytes in © blocks

==10170== % still reachable: @ bytes in © blocks

==10170== ¢ suppressed: @ bytes in @ blocks

==10170== ¢ Rerun with --leak-check=full to see details of leaked memory
==10170==
==10170== For counts of detected and suppressed errors, rerun with: -v

ERROR SUMMARY: 6 errors from 3 contexts (suppressed: © from 0)

B B

(Interesting side note: when we look at the normal program output in this valgrind log, we see
normal behavior (i.e. it prints "hefllof"). That's because the way valgrind runs our program is different
than how our program runs "naturally” (aka "bare metal"). We're not going to get into that for now.)

But back on debugging: A good general rule of thumb to follow when parsing big error logs is to
only consider the first error message (and ignore the rest), so let's do that:

==10170== Invalid read of size 1

==10170== at Ox4C34D04: strlen (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
==10170== by 0x10879F: make_Str (bork.c:22)

==10170== by 0x108978: translate to bork (bork.c:56)

==10170== by 0x1089F2: main (bork.c:68)

The error message states that we are doing an invalid read of size 1. What does this mean? An invalid
read means that your program is reading memory at a place that it shouldn't be (this can cause a
segfault, but not always). Size 1 means that we were attempting to read 1 byte.

Because we're unfamiliar with this ancient codebase and we don't want to read all of it to find the
bug, a good process to follow is to start at high-level details and work our way down (so basically
work our way through the call stack that valgrind provides).

Let's look at bork.c line 68 in main (the botton of the stack):

Str bork_substr = translate_to_bork(src_str.data[i]);

Is something funky going on here? Looks like we are just passing a character to translate_to_bork.
Seems ok so far.

Let's go farther down the call stack and look at bork.c line 56 in translate_to_bork:

return make_Str(res);

We're just calling make_str here. We should go deeper. Let's look at bork.c line 22.

return (Str){.data=str,.len=strlen(str)};

Here we are making a new str struct and setting its data and len parameters. That seems normal too!
But valgrind says that strlen is doing an invalid read?

Well, we're passing a string to it right? What does strlen do again? It determines the length of a
string by iterating over each character until it gets to a null terminator. Maybe there is no null
terminator so strlen keeps going past the end of the string (which would mean that it's going past
the area that we allocated for the string).

Let's make sure our string has a null terminator by checking where we created it.

Earlier, we saw this on line 56 in translate to_bork.

return make_Str(res);

If we look two lines up (line 54), we can see that we are allocating space for the string by calling
alloc_str. Let's take a look at this function.

char *alloc_str(int len) {

return malloc(len*sizeof(char));

Hmmm. It looks like alloc_str is giving us some memory that's only len big, which means when we
write to the string in translate_to_bork, we don't have enough space for a null terminator!

Let's make the following change to fix the problem:

10cl1e,12
< return malloc(len*sizeof(char));

Let's run our program to see if we fixed the problem

./bork hello

Input string: "hello"
Length of translated string: 7
Translate to Bork: "hefllof"

Everything looks like it's working properly. However, there could be hidden errors that we cannot see,
so let's run our code through valgrind to make sure that there are no underlying issues.

valgrind ./bork hello

==29797== Memcheck, a memory error detector

==29797== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==29797== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==29797== Command: ./bork hello

==29797==

Input string: "hello"

Length of translated string: 7

Translate to Bork: "hefllof"

==29797==

==29797== HEAP SUMMARY:

=257/ N/== in use at exit: 8 bytes in 1 blocks

bytes
bytes
bytes
bytes

in
in
in
in

==29797== total heap usage: 11 allocs,
==29797==

==29797== LEAK SUMMARY':

==29797== definitely lost: 8
==29797== indirectly lost: ©
==29797== possibly lost: ©
==29797== still reachable: ©
==29797== suppressed: ©

bytes

in

10 frees, 1,061 bytes allocated

1 blocks
0 blocks
0 blocks
0@ blocks
0 blocks

==29797== Rerun with --leak-check=full to see details of leaked memory

==29797==

==29797== For counts of detected and suppressed errors, rerun with: -v
==29797== ERROR SUMMARY: @ errors from © contexts (suppressed: @ from 0)

Let's take a look at the heap summary below. It tells us that we had 8 bytes in 1 block allocated at the

time of exit. This means that the memory in the heap that was not free'd stems from one allocation

call and that it is 8 bytes large.

Next, we can see the heap summary which shows that we made 11 allocation calls and 10 frees over

the lifetime of the program.

==29797== HEAP SUMMARY:

==29797== in use at exit: 8 bytes in 1 blocks
==29797== total heap usage: 11 allocs, 10 frees, 1,061 bytes allocated

Now let's take a look at the leak summary below. This just states that we lost 8 bytes in 1 block.

==29797== LEAK SUMMARY:

==29797== definitely lost: 8
==29797== indirectly lost: ©
==29797== possibly lost: ©
==29797== still reachable: ©
==29797== suppressed: 0

bytes
bytes
bytes
bytes
bytes

in
in
in
in

in

1 blocks
0 blocks
0 blocks
0@ blocks
0 blocks

==29797== Rerun with --leak-check=full to see details of leaked memory

It tells us to "Rerun with --leak-check=full to see details of leaked memory", so let's do that.

valgrind --leak-check=full ./bork hello

==32334== Memcheck, a memory error detector
==32334== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==32334== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==32334== Command: ./bork hello
==32334==

Input string: "hello"

Length of translated string: 7

Translate to Bork: "hefllof"

==32334==

==32334== HEAP SUMMARY:

==32334== in use at exit: 8 bytes in 1 blocks

==32334== total heap usage: 11 allocs, 10 frees, 1,061 bytes allocated
==32334==

==32334== 8 bytes in 1 blocks are definitely lost in loss record 1 of 1

==32334== at Ox4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
==32334== by 0x108784: alloc_str (in /home/cc/cs6lc/fa22/staff/cs6lc-tac/bork)
==32334== by 0x10884E: concat (in /home/cc/cs6lc/fa22/staff/cs6lc-tac/bork)
==32334== by 0x108A30: main (in /home/cc/cs6lc/fa22/staff/cs6lc-tac/bork)
==32334==

==32334== LEAK SUMMARY:

==32334== definitely lost: 8 bytes in 1 blocks

==32334== indirectly lost: @ bytes in @ blocks

==32334== possibly lost: @ bytes in © blocks

==32334== still reachable: @ bytes in © blocks

==32334== suppressed: 0@ bytes in @ blocks

==32334==

==32334== For counts of detected and suppressed errors, rerun with: -v
==32334== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: @ from 0)

Now Valgrind is telling us the location where the unfree'd block was initially allocated. Let's take a
look at this below. If we follow the call stack, we can see that malloc was called by alloc_str which
was called by concat in main.

==32334== 8 bytes in 1 blocks are definitely lost in loss record 1 of 1

==32334== at Ox4C31BOF: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)
==32334== by 0x108784: alloc_str (in /home/cc/cs6lc/fa22/staff/cs6lc-tac/bork)
==32334== by ©x10884E: concat (in /home/cc/cs6lc/fa22/staff/cs6lc-tac/bork)

==32334== by 0x108A30: main (in /home/cc/cs6lc/fa22/staff/cs6lc-tac/bork)

If we look in main, we can see that we allocate the space for dest_str by calling concat, but we never
free it. We need dest_str until the end of the program, so let's free it right before we return from
main. This struct was allocated on the stack in main (str dest str={};), so we do not need to free the
struct itself. However, the data that the struct points to was allocated in the heap. Therefore, we only
need to free this portion of the struct. If you take a look near the top of the program, we have already
provided a function free_str to free the allocated portion of the struct. Let's call this function at the
end of our program.

76a77

You might be wondering why we are not freeing src_str. If we take a look at where we constructed
src_str (Str src_str = make_Str(argv[1]);), we can see that it was created using make_str which

does not make any calls to allocate space on the heap. The string that we are using to make src_str
comes from argv[1]. The program that calls main is responsible for setting up argv[1], so we don't
have to worry about it.

Once we fix our error, the valgrind output should look like this. The heap summary shows that there
are no blocks allocated at the time we exit. The error summary at the bottom shows us that there are
no errors to report.

valgrind ./bork hello

==10835== Memcheck, a memory error detector

==10835== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.
==10835== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info
==10835== Command: ./bork hello

==10835==

Input string: "hello"

Length of translated string: 7

Translate to Bork: "hefllof"

==10835==

==10835== HEAP SUMMARY':

==10835== in use at exit: @ bytes in @ blocks

==10835== total heap usage: 11 allocs, 11 frees, 1,061 bytes allocated
==10835==

==10835== All heap blocks were freed -- no leaks are possible

==10835==

==10835== For counts of detected and suppressed errors, rerun with: -v
==10835== ERROR SUMMARY: @ errors from © contexts (suppressed: @ from 0)

Exercise 6: Using Valgrind to find segfaults

There's a bug in ex6_valgrind, let's see how we can detect it with valgrind.

1. Compile ex6_valgrind.c. Notice that there are no compiler errors or warnings, and we're using
the -g flag in case we need to debug this program in the future.

gcc -g -0 ex6_valgrind ex6 _valgrind.c

2. Run ex6_valgrind. Notice that the program doesn't throw any errors.
3. Run valgrind on ex6_valgrind. You should see that there are 2 errors.

4. Read the valgrind output carefully. In ex6_answers.txt, answer the following questions. Please
don't change the formatting of the file. For question 1 through 7, we are referring to the first
valgrind error (an invalid write error).

1. How many bytes are the invalid write? (The answer should be a number without any units)

2. Which function caused the invalid write? (The answer should be the name of the function)

3. Which function called the answer to question 2? (The answer should be the name of a
function)

4. Which file did the call occur in? (The answer should be the name of a file)
5. Which line did the call occur on? (The answer should be a number)

6. How many bytes were actually allocated? (The answer should be a number without any
units)

7. How many bytes should have been allocated? Feel free to read the code. (The answer should
be a number without any units)

8. Are there any memory leaks? (The answer should be Yes or No)

9. How many bytes were leaked? Write O if there are no memory leaks. (The answer should be
a number without any units)

Exercise 7: Memory Management

This exercise uses ex7_vector.h, ex7_test_vector.c, and ex7_vector.c, where we provide you with a
framework for implementing a variable-length array. This exercise is designed to help familiarize you
with C structs and memory management in C.

1. Try to explain why bad_vector_new() is bad. We have provided the reason here, so you can
verify your understanding

» bad_vector_new()

2. Fill in the functions vector new(), vector_get(), vector delete(), and vector _set() in
ex7_vector.c so that our test code ex7_test_vector.c runs without any memory management
errors.

Comments in the code describe how the functions should work. Look at the functions we've filled
in to see how the data structures should be used. For consistency, it is assumed that all entries in

the vector are 0 unless set by the user. Keep this in mind as malLoc() does not zero out the memory
it allocates. vector_set should resize the array if the index passed in is larger than the size of the

array.

3. Test your implementation of vector_new(), vector_get(), vector_delete(), and vector_set() for
correctness.

gcc -g -0 ex7_vector ex7_vector.c ex7_test_vector.c

./ex7_vector

4. Test your implementation of vector_new(), vector_get(), vector_delete(), and vector_set() for
memory management.

valgrind ./ex7_vector

Any number of suppressed errors is fine; they do not affect us.

Feel free to also use CGDB to debug your code.

Exercise 8: Double Pointers

Edit ex8_double_pointers.c using your editor of choice and fill in the blanks.

Compile and run the program and check that the output matches what you expect.

Exercise 9: Putting It All Together

Here's one to help you in your interviews. In ex9_cycle.c, complete the function 11_has_cycle() to
implement the following algorithm for checking if a singly-linked list has a cycle.

1. Start with two pointers at the head of the list. One will be called fast_ptr and the other will be
called slow_ptr.

2. Advance fast_ptr by two nodes. If this is not possible because of a null pointer, we have found
the end of the list, and therefore the list is acyclic.

3. Advance slow_ptr by one node. (A null pointer check is unnecessary. Why?)

4. If the fast_ptr and slow_ptr ever point to the same node, the list is cyclic. Otherwise, go back to
step 2.

5. If the list has a cycle, return 1. Else, return 0.

If you want to see the definition of the node struct, open ex9_cycle.h (FAQ: What is a header file?).

Action Item

Implement 11_has_cycle(). Once you've done so, you can execute the following commands to run
the tests for your code. If you make any changes, make sure to run ALL of the following commands
again, in order.

gcc -g -0 ex9 _test cycle ex9 test cycle.c ex9 cycle.c
./ex9_test_cycle

Here's a Wikipedia article [on the algorithm and why it works. Don't worry about it if you don't

completely understand it. We won't test you on this.

Exercise 10: Reflection and Feedback Form

We are working to improve the class every week - please fill out this survey [7' to tell us about your
experience in discussion and lab so far!

Submission

Save, commit, and push your work, then submit to the Lab 2 assignment on Gradescope.

Common GDB Errors

GDB is skipping over lines of code

This could mean that your source file is more recent than your executable. Exit GDB, recompile your
code with the -g flag, and restart gdb.

GDB isn't loading my file

You might see an error like this "not in executable format: file format not recognized" or "No symbol
table loaded. Use the "file" command."

This means that you called gdb on the source file (the one ending in .c) instead of the executable.
Exit GDB and make sure that you call it with the executable.

How do | switch between the code window and the console?

CGDB presents a vim-like navigation interface: Press |i| on your keyboard to switch from the code
window to the console. Press to switch from the console to the code window.

GDB presents a readline/emacs-like navigation interface: Press + [X| then @ to switch between
windows.

I'm stuck in the code window
Press |i|on your keyboard. This should get you back to the console.

The text Ul is garbled
Refresh the GDB text Ul by pressing + (1)

Other Useful GDB Commands (Recommended)

Command: info locals

Prints the value of all of the local variables in the current stack frame

Command: command

Executes a list of commands every time a break point is reached. For example:

Set a breakpoint:

b 73

Type commands followed by the breakpoint number:

commands 1

Type the list of commands that you want to execute separated by a new line. After your list of

commands, type end and hit .

p varl
p var2
end

