
CS 61C Spring 2024

CS61C: Great Ideas in Computer 
Architecture (aka Machine Structures)

Lecture 8: RISC-V Part 1

Instructors: Lisa Yan, Justin Yokota

#



CS 61C Spring 2024

Computing in the News

● Memory safe programming languages are on the rise. Here's how developers should respond | ZDNET

2

https://www.zdnet.com/article/memory-safe-programming-languages-are-on-the-rise-heres-how-developers-should-respond/


CS 61C Spring 2024

Agenda

● Warm-Up: Floating Point
● Intro to Assembly Languages
● RISC-V Programming Paradigm

○ add and sub
○ Immediates: The addi instruction

● Demo: Venus

3



CS 61C Spring 2024

Agenda

● Warm-Up: Floating Point
● Intro to Assembly Languages
● RISC-V Programming Paradigm

○ add and sub
○ Immediates: The addi instruction

● Demo: Venus

4



CS 61C Spring 2024

5



CS 61C Spring 2024

6



CS 61C Spring 2024

7



CS 61C Spring 2024

Agenda

● Warm-Up: Floating Point Questions
● Intro to Assembly Languages
● RISC-V Programming Paradigm

○ add and sub
○ Immediates: The addi instruction

● Demo: Venus

8



CS 61C Spring 2024

Building a computer from the ground up

● Any program we write needs to run on a circuit in order to be useful.
● However, circuit-level programming is highly restrictive. 

○ With C, a human designed the programming language
○ With a circuit, silicon dictates what language we can design.

● Early computers essentially had to be rebuilt for every program you wanted to 
run, since different computations required different circuits.

● One major advancement in computer science was the creation of 
software-based languages. 

○ Instead of making a new circuit for every problem you want to solve, make a circuit (called a 
CPU) that solves the problem “Carry out a sequence of instructions stored as binary data”. 
Then solve your problem by writing instructions in binary data.

9



CS 61C Spring 2024

Assembly Language

● We don’t want to change the CPU after we build it, so when designing our 
CPU, we need to decide on a specific set of instructions that will be supported 
by the CPU, along with a way to translate each instruction to a binary form.

● Different CPUs implement different sets of instructions.  The set of 
instructions a particular CPU implements is an Instruction Set Architecture 
(ISA), and the programming language defined by the ISA is commonly known 
as an assembly language.

○ Examples: ARM (cell phones), Intel x86 (i9, i7, i5, i3), IBM/Motorola PowerPC (old Macs), 
MIPS, RISC-V, ...

10



CS 61C Spring 2024

Assembly Language

● C is generally considered a “lower-level” language than Java or Python, 
because it’s “closer” to the underlying CPU

○ Less is automated by the language, so you get faster runtimes, but have to keep track of more 
things

● Ultimately, though, C is still considered a high-level language, because there’s 
still a lot done for you. 

○ C lets you write a bunch of operations in a single line of code, and splits it up for you
○ C sets up the stack for you and keeps track of where it stored local variables
○ C lets you just call a function, and you can expect that calling functions won’t affect any local 

variables you have.
○ C lets you name variables, and will keep track of that name, and even the type of variable that 

name refers to.
● Once you start working with assembly languages, almost everything is the 

result of an explicit instruction by the programmer.
11



CS 61C Spring 2024

Instruction Set Architectures

● Early trend in ISA design was to add more and more instructions to new 
CPUs to do elaborate operations

○ VAX architecture had an instruction to multiply polynomials!
● RISC philosophy (Cocke IBM, Patterson, Hennessy, 1980s) – Reduced 

Instruction Set Computing
○ Keep the instruction set small and simple.
○ Let software do complicated operations by composing simpler ones.
○ A simpler CPU is easier to iterate on (allowing for faster development), and can generally be 

made faster than a complex CPU (we’re often limited by the slowest instruction we decide to 
implement)

12



CS 61C Spring 2024

RISC-V

● For the purposes of this class, we’ll be learning RISC-V as our assembly 
language

● Why?
○ RISC-V is relatively simple, in that there’s only a few instructions in the base instruction set, 

and that instructions themselves follow a consistent format.
■ x86 is a more popular language (base CPU for most laptops/desktops), but is a CISC 

language that Huffman encodes its instructions
■ Project 3: Build a complete RISC-V CPU

○ RISC-V is relatively popular, open-source, and growing in popularity
○ RISC-V was invented in Berkeley in 2010. If we teach students RISC-V, they’re more likely to 

use a RISC-V architecture in the future, thus allowing RISC-V to keep growing in popularity.

13



CS 61C Spring 2024

RISC-V Resources

● CS 61C Reference Card
○ https://cs61c.org/sp24/pdfs/resources/reference-card.pdf
○ Lists out the entire base architecture

● Venus
○ https://venus.cs61c.org/
○ Online RISC-V simulator

14

https://cs61c.org/sp24/pdfs/resources/reference-card.pdf
https://venus.cs61c.org/


CS 61C Spring 2024

Agenda

● Warm-Up: Floating Point
● Intro to Assembly Languages
● RISC-V Programming Paradigm

○ add and sub
○ Immediates: The addi instruction

● Demo: Venus

15



CS 61C Spring 2024

Overarching view of RISC-V

● A RISC-V system is composed of two main parts:
○ The CPU, which is responsible for computing
○ Main memory, which is responsible for long-term data storage (Monday)

● The CPU is designed to be extremely fast, often completing one instruction 
every nanosecond or faster

○ Note: Light travels 30 cm in 1 nanosecond. In other words, it takes longer for light to travel 
from one end of my laptop to the other, than it does for a CPU to finish one instruction.

● Going to main memory often takes hundreds or even thousands of times 
longer.

● The CPU can store a small amount of memory, through components called 
registers.

16



CS 61C Spring 2024

Registers

● A register is a CPU component specifically designed to store a small amount 
of data. Each register stores 32 bits of data (for a 32-bit system) or 64 bits of 
data (for a 64-bit system). For the purposes of this class, we consider RV32 
only (which uses 32-bit registers)

● This data is purely binary; types do not exist at the assembly level
○ It’s the programmer’s responsibility to keep track of that register and its type.

● Registers are a hardware component, so once you make the CPU, you can’t 
change the number of registers available.

○ Can't "make" a new register when defining a new variable; have to delete an existing register 
for each variable you make.

● RISC-V gives access to 32 integer registers

17



CS 61C Spring 2024

Aside: Registers are Inside the Processor

18



CS 61C Spring 2024

Great Idea #3: Principle of Locality / Memory Hierarchy

19



CS 61C Spring 2024

Registers

● Registers are a hardware component, so once you make the CPU, you can’t 
change the number of registers available.

● RISC-V gives access to 32 integer registers
● Registers are numbered from 0 to 31

○ Referred to by number: x0 – x31
● The register x0 is special and always stores 0 (More on this later). So only 31 

registers are available to hold variables
● The other 31 registers are all identical in behavior; the only difference 

between different registers is the conventions we follow when using them.
● Later, we’ll give them names to hint at what conventions get used on which 

registers.
20



CS 61C Spring 2024

Instructions

● Each line of RISC-V code is a single instruction, which executes a simple 
operation on registers.

● Instructions are generally written in the format
○ <instruction name> <destination register> <operands>
○ Ex. “add x5 x6 x7” means “Add the values stored in x6 and x7, and store the result in x5”
○ Commas can be added between registers (“add x5, x6, x7”), but this is optional.

21



CS 61C Spring 2024

Instructions

● Comments are written using the # symbol.
○ Anything written after a # on a line gets ignored
○ Similar to Python comment syntax

● Important: Comments are far more important in RISC-V than in other 
languages. In a higher level language, you can sometimes get away with 
choosing variable names so that the code is self-documenting. In RISC-V, we 
don’t have variable names!

● Uncommented RISC-V code is practically impossible to debug properly. If you 
don’t comment your code, we may not be able to help debug in office hours.

22



CS 61C Spring 2024

Addition and Subtraction of Integers (1/3)

Addition in Assembly

● Example: add x1,x2,x3 (in RISC-V)
● Equivalent to: a = b + c     (in C)
● where C variables ⇔ RISC-V registers are:

                              a ⇔ x1, b ⇔ x2, c ⇔ x3

Subtraction in Assembly

● Example: sub x3,x4,x5 (in RISC-V)
● Equivalent to: d = e - f     (in C)
● where C variables ⇔ RISC-V registers are:

                              d ⇔ x3, e ⇔ x4, f ⇔ x5 23



CS 61C Spring 2024

Addition and Subtraction of Integers (2/3)

How to do the following C statement?
a = b + c + d - e;

● Break into multiple instructions
add x10, x1, x2  # a_temp = b + c
add x10, x10, x3 # a_temp = a_temp + d
sub x10, x10, x4 # a = a_temp - e

Note: A single line of C may break up into several lines of RISC-V.

Note: Everything after the hash mark on each line is ignored (comments).

24



CS 61C Spring 2024

Addition and Subtraction of Integers (3/3)

How do we do this?
f = (g + h) - (i + j);

● Use intermediate temporary register
add x5, x20, x21 # a_temp = g + h
add x6, x22, x23 # b_temp = i + j
sub x19, x5, x6  # f = (g + h) - (i + j)

Note: By using x5 and x6 in this way, we overwrite any data that used to be in 
those registers. 

Note: We could also have written this as f = g + h - i - j; which allows us 
to compute this without any temporary registers. A smart compiler may write code 
this way instead.

25



CS 61C Spring 2024

Immediates

● Immediates are numerical constants.
● They appear often in code, so there are special instructions for them.
● Add Immediate:

○ addi x3,x4,10 (in RISC-V)
○ f = g + 10 (in C)
○ where RISC-V registers x3,x4 are associated with C variables f,g

● Syntax similar to add instruction, except that last argument is a number 
instead of a register.

● Common mistake: addi x3,x4,x5 / add x3,x4,10 are both invalid 
RISC-V instructions; be careful with using the register version vs the 
immediate version of an instruction!

26



CS 61C Spring 2024

Immediates

● There is no Subtract Immediate in RISC-V: Why?
○ There are add and sub, but no addi counterpart

● Limit types of operations that can be done to absolute minimum
○ if an operation can be decomposed into a simpler operation, don’t include it
○ addi …, -X = subi …, X => so no subi

addi x3,x4,-10 (in RISC-V)
f = g - 10 (in C)

● where RISC-V registers x3,x4 are associated with C variables f,g

27



CS 61C Spring 2024

Register Zero

● One particular immediate, the number zero (0), appears very often in code.
● So the register zero (x0) is ‘hard-wired’ to value 0; e.g.

add x3,x4,x0 (in RISC-V)
f=g (in C)

● where RISC-V registers x3,x4 are associated with C variables f, g
● Defined in hardware, so an instruction

 add x0,x3,x4 will not do anything!

28



CS 61C Spring 2024

Agenda

● Warm-Up: Floating Point
● Intro to Assembly Languages
● RISC-V Programming Paradigm

○ add and sub
○ Immediates: The addi instruction

● Demo: Venus

29



CS 61C Spring 2024

Venus Demo

● Done in lecture
● Add 1+2+3+4+5

addi x5 x0 0
addi x6 x0 5
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1

30


