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Computing in the News

● Memory safe programming languages are on the rise. Here's how developers should respond | ZDNET

2

https://www.zdnet.com/article/memory-safe-programming-languages-are-on-the-rise-heres-how-developers-should-respond/


CS 61C Spring 2024

Agenda

● Warm-Up: Floating Point
● Intro to Assembly Languages
● RISC-V Programming Paradigm

○ add and sub
○ Immediates: The addi instruction

● Demo: Venus
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Agenda

● Warm-Up: Floating Point Questions
● Intro to Assembly Languages
● RISC-V Programming Paradigm

○ add and sub
○ Immediates: The addi instruction

● Demo: Venus

8



CS 61C Spring 2024

Building a computer from the ground up

● Any program we write needs to run on a circuit in order to be useful.
● However, circuit-level programming is highly restrictive. 

○ With C, a human designed the programming language
○ With a circuit, silicon dictates what language we can design.

● Early computers essentially had to be rebuilt for every program you wanted to 
run, since different computations required different circuits.

● One major advancement in computer science was the creation of 
software-based languages. 

○ Instead of making a new circuit for every problem you want to solve, make a circuit (called a 
CPU) that solves the problem “Carry out a sequence of instructions stored as binary data”. 
Then solve your problem by writing instructions in binary data.
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Assembly Language

● We don’t want to change the CPU after we build it, so when designing our 
CPU, we need to decide on a specific set of instructions that will be supported 
by the CPU, along with a way to translate each instruction to a binary form.

● Different CPUs implement different sets of instructions.  The set of 
instructions a particular CPU implements is an Instruction Set Architecture 
(ISA), and the programming language defined by the ISA is commonly known 
as an assembly language.

○ Examples: ARM (cell phones), Intel x86 (i9, i7, i5, i3), IBM/Motorola PowerPC (old Macs), 
MIPS, RISC-V, ...
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Assembly Language

● C is generally considered a “lower-level” language than Java or Python, 
because it’s “closer” to the underlying CPU

○ Less is automated by the language, so you get faster runtimes, but have to keep track of more 
things

● Ultimately, though, C is still considered a high-level language, because there’s 
still a lot done for you. 

○ C lets you write a bunch of operations in a single line of code, and splits it up for you
○ C sets up the stack for you and keeps track of where it stored local variables
○ C lets you just call a function, and you can expect that calling functions won’t affect any local 

variables you have.
○ C lets you name variables, and will keep track of that name, and even the type of variable that 

name refers to.
● Once you start working with assembly languages, almost everything is the 

result of an explicit instruction by the programmer.
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Instruction Set Architectures

● Early trend in ISA design was to add more and more instructions to new 
CPUs to do elaborate operations

○ VAX architecture had an instruction to multiply polynomials!
● RISC philosophy (Cocke IBM, Patterson, Hennessy, 1980s) – Reduced 

Instruction Set Computing
○ Keep the instruction set small and simple.
○ Let software do complicated operations by composing simpler ones.
○ A simpler CPU is easier to iterate on (allowing for faster development), and can generally be 

made faster than a complex CPU (we’re often limited by the slowest instruction we decide to 
implement)
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RISC-V

● For the purposes of this class, we’ll be learning RISC-V as our assembly 
language

● Why?
○ RISC-V is relatively simple, in that there’s only a few instructions in the base instruction set, 

and that instructions themselves follow a consistent format.
■ x86 is a more popular language (base CPU for most laptops/desktops), but is a CISC 

language that Huffman encodes its instructions
■ Project 3: Build a complete RISC-V CPU

○ RISC-V is relatively popular, open-source, and growing in popularity
○ RISC-V was invented in Berkeley in 2010. If we teach students RISC-V, they’re more likely to 

use a RISC-V architecture in the future, thus allowing RISC-V to keep growing in popularity.
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RISC-V Resources

● CS 61C Reference Card
○ https://cs61c.org/sp24/pdfs/resources/reference-card.pdf
○ Lists out the entire base architecture

● Venus
○ https://venus.cs61c.org/
○ Online RISC-V simulator
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Overarching view of RISC-V

● A RISC-V system is composed of two main parts:
○ The CPU, which is responsible for computing
○ Main memory, which is responsible for long-term data storage (Monday)

● The CPU is designed to be extremely fast, often completing one instruction 
every nanosecond or faster

○ Note: Light travels 30 cm in 1 nanosecond. In other words, it takes longer for light to travel 
from one end of my laptop to the other, than it does for a CPU to finish one instruction.

● Going to main memory often takes hundreds or even thousands of times 
longer.

● The CPU can store a small amount of memory, through components called 
registers.
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Registers

● A register is a CPU component specifically designed to store a small amount 
of data. Each register stores 32 bits of data (for a 32-bit system) or 64 bits of 
data (for a 64-bit system). For the purposes of this class, we consider RV32 
only (which uses 32-bit registers)

● This data is purely binary; types do not exist at the assembly level
○ It’s the programmer’s responsibility to keep track of that register and its type.

● Registers are a hardware component, so once you make the CPU, you can’t 
change the number of registers available.

○ Can't "make" a new register when defining a new variable; have to delete an existing register 
for each variable you make.

● RISC-V gives access to 32 integer registers
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Aside: Registers are Inside the Processor
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Great Idea #3: Principle of Locality / Memory Hierarchy
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Registers

● Registers are a hardware component, so once you make the CPU, you can’t 
change the number of registers available.

● RISC-V gives access to 32 integer registers
● Registers are numbered from 0 to 31

○ Referred to by number: x0 – x31
● The register x0 is special and always stores 0 (More on this later). So only 31 

registers are available to hold variables
● The other 31 registers are all identical in behavior; the only difference 

between different registers is the conventions we follow when using them.
● Later, we’ll give them names to hint at what conventions get used on which 

registers.
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Instructions

● Each line of RISC-V code is a single instruction, which executes a simple 
operation on registers.

● Instructions are generally written in the format
○ <instruction name> <destination register> <operands>
○ Ex. “add x5 x6 x7” means “Add the values stored in x6 and x7, and store the result in x5”
○ Commas can be added between registers (“add x5, x6, x7”), but this is optional.
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Instructions

● Comments are written using the # symbol.
○ Anything written after a # on a line gets ignored
○ Similar to Python comment syntax

● Important: Comments are far more important in RISC-V than in other 
languages. In a higher level language, you can sometimes get away with 
choosing variable names so that the code is self-documenting. In RISC-V, we 
don’t have variable names!

● Uncommented RISC-V code is practically impossible to debug properly. If you 
don’t comment your code, we may not be able to help debug in office hours.
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Addition and Subtraction of Integers (1/3)

Addition in Assembly

● Example: add x1,x2,x3 (in RISC-V)
● Equivalent to: a = b + c     (in C)
● where C variables ⇔ RISC-V registers are:

                              a ⇔ x1, b ⇔ x2, c ⇔ x3

Subtraction in Assembly

● Example: sub x3,x4,x5 (in RISC-V)
● Equivalent to: d = e - f     (in C)
● where C variables ⇔ RISC-V registers are:

                              d ⇔ x3, e ⇔ x4, f ⇔ x5 23
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Addition and Subtraction of Integers (2/3)

How to do the following C statement?
a = b + c + d - e;

● Break into multiple instructions
add x10, x1, x2  # a_temp = b + c
add x10, x10, x3 # a_temp = a_temp + d
sub x10, x10, x4 # a = a_temp - e

Note: A single line of C may break up into several lines of RISC-V.

Note: Everything after the hash mark on each line is ignored (comments).
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Addition and Subtraction of Integers (3/3)

How do we do this?
f = (g + h) - (i + j);

● Use intermediate temporary register
add x5, x20, x21 # a_temp = g + h
add x6, x22, x23 # b_temp = i + j
sub x19, x5, x6  # f = (g + h) - (i + j)

Note: By using x5 and x6 in this way, we overwrite any data that used to be in 
those registers. 

Note: We could also have written this as f = g + h - i - j; which allows us 
to compute this without any temporary registers. A smart compiler may write code 
this way instead.
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Immediates

● Immediates are numerical constants.
● They appear often in code, so there are special instructions for them.
● Add Immediate:

○ addi x3,x4,10 (in RISC-V)
○ f = g + 10 (in C)
○ where RISC-V registers x3,x4 are associated with C variables f,g

● Syntax similar to add instruction, except that last argument is a number 
instead of a register.

● Common mistake: addi x3,x4,x5 / add x3,x4,10 are both invalid 
RISC-V instructions; be careful with using the register version vs the 
immediate version of an instruction!
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Immediates

● There is no Subtract Immediate in RISC-V: Why?
○ There are add and sub, but no addi counterpart

● Limit types of operations that can be done to absolute minimum
○ if an operation can be decomposed into a simpler operation, don’t include it
○ addi …, -X = subi …, X => so no subi

addi x3,x4,-10 (in RISC-V)
f = g - 10 (in C)

● where RISC-V registers x3,x4 are associated with C variables f,g
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Register Zero

● One particular immediate, the number zero (0), appears very often in code.
● So the register zero (x0) is ‘hard-wired’ to value 0; e.g.

add x3,x4,x0 (in RISC-V)
f=g (in C)

● where RISC-V registers x3,x4 are associated with C variables f, g
● Defined in hardware, so an instruction

 add x0,x3,x4 will not do anything!
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Venus Demo

● Done in lecture
● Add 1+2+3+4+5

addi x5 x0 0
addi x6 x0 5
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1
add x5 x5 x6
addi x6 x6 -1
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