
CS 61C Spring 2024

CS61C: Great Ideas in Computer
Architecture (aka Machine Structures)

Lectures 12+13: RISC-V Instruction Formats

Instructors: Lisa Yan, Justin Yokota

#

To jump to the start of Lecture 13,
click here (slide ~29)

CS 61C Spring 2024

Agenda

● Lecture 12
○ Intro
○ R-types
○ I-types
○ S-types

● Lecture 13
○ U-types
○ B-types
○ J-types
○ Concluding Notes

● (Putting these two lectures together so it's easier to reference later)

2

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

3

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

4

CS 61C Spring 2024

Overview

● Assembly languages are primarily useful because they can be directly translated
into binary code that can be run by a CPU.

● RISC-V has a particularly simple structure: Each instruction is translated into
instructions of the same length; for RV32 (the version we learn in this class), each
instruction is 32 bits (4 bytes) long.

● Different instructions require different values
○ "add" specifies 3 register inputs
○ "addi" specifies 2 registers and 1 immediate

● As such, we define multiple formats, with each instruction getting encoded in its
format.

● Overall design philosophy: Split the 32 bits into "chunks" for each component of an
instruction, and try to overlap these chunks as much as possible to simplify the
underlying circuit.

● Most of this information is presented in compressed form on our reference card, so
there's no need to memorize the exact numbers associated with each instruction

5

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

6

CS 61C Spring 2024

R-Type

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Name of field Number of bits in field

Start/End bit indexes of field

7

CS 61C Spring 2024

R-Type

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

● Designed for instructions with 3 registers and no immediate
○ Arithmetic operators like add or sub

● Each register is identified by its number. 32 registers → 5 bits to identify one
register uniquely

○ x0 → 0b00000
○ a0 → x10 → 0b01010

● rd: Destination register
● rs1: 1st source register
● rs2: 2nd source register

Name of field Number of bits in field

Start/End bit indexes of field

8

CS 61C Spring 2024

R-Type

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

● opcode: Instruction identifier: Always the last 7 bits of the instruction over all
instruction formats

○ Can therefore be used to determine which instruction format is currently in use.
● Some sets of similar instructions get assigned the same opcode

○ Ex. All arithmetic R-type instructions have the opcode 0x33
● funct3: 3-bit identifier to differentiate instructions with the same opcode
● funct7: Extra 7-bit identifier for extremely similar instructions with the same

opcode and funct3 (such as sra and srl)

Name of field Number of bits in field

Start/End bit indexes of field

9

CS 61C Spring 2024

R-Type: Example Translation

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Translate "add s2 s3 s4" to hex

● Step 1: Determine opcode and instruction type from reference card
○ Type: R

○ Opcode: 0b011 0011

○ funct3: 0b000

○ funct7: 0b000 0000

● Step 2: Write out format
○ 0b ??????? ????? ????? ??? ????? ???????

Name of field Number of bits in field

Start/End bit indexes of field

10

CS 61C Spring 2024

R-Type: Example Translation

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Translate "add s2 s3 s4" to hex

● Step 3: Registers
○ s2 -> x18 ->0b10010 (rd)

○ s3 -> x19 ->0b10011 (rs1)

○ s4 -> x20 ->0b10100 (rs2)

○ 0b 0000000 10100 10011 000 10010 0110011

Name of field Number of bits in field

Start/End bit indexes of field

11

CS 61C Spring 2024

R-Type: Example Translation

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Translate "add s2 s3 s4" to hex

● Step 1: Determine opcode and instruction type from reference card
○ Type: R

○ Opcode: 0b011 0011

○ funct3: 0b000

○ funct7: 0b000 0000

● Step 2: Write out format
○ 0b 0000000 ????? ????? 000 ????? 0110011

Name of field Number of bits in field

Start/End bit indexes of field

12

CS 61C Spring 2024

R-Type: Example Translation

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Translate "add s2 s3 s4" to hex

● Step 4: Convert to hex
○ 0b 0000000 10100 10011 000 10010 0110011

○ 0b 0000 0001 0100 1001 1000 1001 0011 0011

○ 0x01498933

Name of field Number of bits in field

Start/End bit indexes of field

13

CS 61C Spring 2024

R-Type: Example Translation

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Translate "0x01B3 42B3" to RV32 instruction

● Step 1: Convert to binary and determine opcode and instruction type from
reference card

○ Binary: 0b0000 0001 1011 0011 0100 0010 1011 0011

○ Opcode: last 7 bits = 0b011 0011

○ Conclusion: R-type instruction

Name of field Number of bits in field

Start/End bit indexes of field

14
Updated in class from “Translate … to hex”

CS 61C Spring 2024

R-Type: Example Translation

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Translate "0x01B3 42B3" to RV32 instruction

● Step 2: Split according to R-type format
○ Binary: 0b0000000 11011 00110 100 00101 0110011

● Step 3: Determine funct3/funct7 for instruction
○ funct3: 0b100

○ funct7: 0b000 0000

○ Conclusion: xor operation

Name of field Number of bits in field

Start/End bit indexes of field

15

CS 61C Spring 2024

R-Type: Example Translation

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 rs2 rs1 funct3 rd opcode

Translate "0x01B3 42B3" to RV32 instruction

● Step 2: Split according to R-type format
○ Binary: 0b0000000 11011 00110 100 00101 0110011

● Step 4: Determine registers
○ rd: 0b00101 -> x5 -> t0

○ rs1: 0b00110 -> x6 -> t1

○ rs2: 0b11011 -> x27-> s11

● Conclusion: xor t0 t1 s11

Name of field Number of bits in field

Start/End bit indexes of field

16

CS 61C Spring 2024

R-Type: All Instructions

17

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

18

CS 61C Spring 2024

I-Type

12 5 3 75

31 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]

19

CS 61C Spring 2024

I-Type

12 5 3 75

31 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]

● Designed for instructions with 2 registers (rs1 and rd) and 1 immediate
○ Arithmetic operations with immediates
○ Loads
○ jalr
○ ecall and ebreak are also technically I-types, but they ignore the rd, rs1, and immediate, and

their value isn't really in scope.
○ Stores use rs1 and rs2, so we have a separate instruction format for them.

● Most components are stored the same way as before, with the addition of the
imm component

20

CS 61C Spring 2024

I-Type

12 5 3 75

31 20 15 71219 14 11 6 0

rs1 funct3 rd opcodeimm[11:0]

● Immediate is stored in the component imm
○ Note the [11:0], which indicates that we store the 11th bit of the immediate at position 31, the

10th bit of the immediate at position 30, …, the 0th bit of the immediate at position 20
● I-type immediates are 12 bits

○ Therefore, we can only store a 12-bit integer as an immediate
● Most instructions use signed immediates, so our range for I-type immediates

is [-2048,2047].
○ Ex. "addi sp sp -2048" is valid, but "addi sp sp -2052" is NOT valid RISC-V code

21

CS 61C Spring 2024

I*-Type

● Special note: For shift instructions (slli, srli, srai), we only have a max shift of
31

○ Any larger shift will shift all our data off the number
● As such, these instructions use a modified I-type that specifies a funct7

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

funct7 imm[4:0] rs1 funct3 rd opcode

22

CS 61C Spring 2024

I-Type: Arithmetic Instructions

23

CS 61C Spring 2024

I-Type: Load and Jump Instructions

24

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

25

CS 61C Spring 2024

S-Type

● Designed for instructions with 2 source registers and an immediate
○ Store instructions

● Note that we put rs1 and rs2 in the same spots as in R-type instructions, so
we need to split the immediate bits to "fill in" the remaining gaps.

● Immediate is similar, but now we need to "piece together the immediate"
○ Ex. If we had immediate 0b1101 0101 0001, then we would put 0b110 1010 in the first

immediate box, and 0b10001 in the second immediate box.

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

26

CS 61C Spring 2024

S-Type: All Instructions

● Warning: rs2 comes before rs1 in store instructions!
○ This is because we want rs1 to always be the register that gets added to

immediates, to simplify our circuitry
27

CS 61C Spring 2024

Practice: Translate an instruction!

The code for this is embedded in HW, so it will not be made public.

28

CS 61C Spring 2024

CS61C: Great Ideas in Computer
Architecture (aka Machine Structures)

Lectures 12+13: RISC-V Instruction Formats

Instructors: Lisa Yan, Justin Yokota

#

CS 61C Spring 2024

Extenuating Circumstances Extension Philosophy

● One of the learning goals is early communication and time management
○ This includes being able to own up to your responsibilities when you cannot make this

deadline
● The deadline that we consider is the on-time submission deadline. You are

expected to be trying to make this on-time deadline.
○ Labs/Projects: Tuesday
○ Homeworks: Thursday

● Philosophy: The guaranteed extension (1 day for labs/hw, 2 days for proj):
○ is supposed to be a safety net for unanticipated issues that come up that directly impact your

ability to complete the assignment by the original deadline
○ is not intended to be used as an adjusted deadline so you can focus on other work instead

30

CS 61C Spring 2024

Extenuating Circumstances Extensions PSA

● What we’re noticing:
○ Lots of people are using the guaranteed extension policy and extenuating circumstances

form as intended. ✅
○ ⚠ However, there is a subset of students that are misusing the policy, massively

increasing staff overhead and reducing staff capacity to support concurrent assignments.
● What we look for when you submit to the extenuating circumstances form:

○ Did you reach out before the original deadline?
○ If not, when did you start the assignment? Was it before the original deadline?

■ PrairieLearn has detailed logs; please commit often for labs and projects
○ Is this recurring? Have you submitted to the form before?

■ Mostly used to determine if a face-to-face meeting is necessary
● Now that we’ve settled into the semester, we will be enforcing this policy.

○ More details to be released in next week’s announcements.

31

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

32

CS 61C Spring 2024

U-type instructions: lui and auipc

● Up until now, we haven't talked about what these two instructions actually do
● Load Upper Immediate: lui rd imm

○ Sets rd to imm << 12
● Add Upper Immediate to Program Counter: auipc rd imm

○ Sets rd to (imm << 12) + PC
● Primarily used in two pseudoinstructions:

○ li rd imm: Set rd to imm
○ la rd Label: Set rd to the address of Label

33

CS 61C Spring 2024

LUI

● Consider li:
○ How would you translate "li t0 0x12345678" to instructions?

■ Can't just do "addi t0 x0 0x12345678" because that's way too big
○ Multiple addis or addis with sllis would work, but require many instructions for some numbers.
○ Ideally, we want to be able to do this in exactly 2 instructions

■ 1 instruction is impossible since no 32-bit object can encode all 232 possible immediates
AND all 32 possible destination registers

● Solution: lui instruction
○ In the above example, we can do:

lui t0 0x12345

addi t0 t0 0x678

● This works, as long as we give U-type instructions 20 bits of immediate
34

CS 61C Spring 2024

LUI: Corner case

● How would you translate "li t0 0xABCDEFFF" to instructions?
● Initial idea:

○ lui t0 0xABCDE

addi t0 t0 0xFFF

● Problem: 0xFFF isn't 4095; it's -1
○ After the first line, we get t0 = 0xABCDE000
○ After the second line, we get t0 = 0xABCDDFFF instead!

● As such, we need to be careful in this case and do lui t0 0xABCDF instead
○ lui t0 0xABCDF #t0 stores 0xABCDF000

addi t0 t0 0xFFF #t0 stores 0xABCDEFFF

● This ends up affecting li instructions only when the offset has its 11th bit set to
1, so it's an easy case to forget about.

35

CS 61C Spring 2024

AUIPC and Relative Addressing

● auipc similarly gets used primarily as a way to save an arbitrary value when
used with an addi

● The main difference is that it adds its result to PC
● Often when writing code, we want to allow multiple programs to be combined

(like with libraries), but that would change the addresses of all the labels in
our code

● To avoid this issue, many instructions involving labels use relative addressing
instead of absolute addressing.

○ Absolute address: "This label is at location 0x000000FC". This fails if we move our code to a
different place in memory

○ Relative address: "This label is 48 bytes after the current line of code". This still works if we
move both the line of code and the label the same distance.

● As such, auipc often gets used with la instructions.
36

CS 61C Spring 2024

U-Type

● Designed for instructions which need 20 immediate bits
○ lui and auipc

● Note that there's a slight inconsistency between how the immediate is treated
in the instruction format compared to the instruction itself

○ Note that the instruction format listed here doesn't store the bottom 12 bits of the value imm
○ If we write "lui t0 0x12345", we should treat imm as 0x12345000, and thus store 0x12345 in

those 20 bits, instead of 0x00123.
○ This is due to RISC-V not actually having a formal syntax (RISC-V only specifies the binary

encoding), so the syntax that got adopted was a variation of x86 syntax

20 75

31 712 11 6 0

imm[32:12] rd opcode

37

CS 61C Spring 2024

U-Type: All Instructions

38

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

39

CS 61C Spring 2024

Labels

● Recall: Labels don't actually exist. When translating RISC-V to binary, we
need to convert all labels into explicit references to a particular line of code

● Recall: Since we want to be able to move around code blocks in memory, we
prefer to use relative addressing instead of absolute addresses.

● Solution: When writing code using labels, first convert the label into an offset,
which specifies how many bytes off we would need to jump to get to that
label.

40

CS 61C Spring 2024

Example: Converting Labels into offsets

Translate the labels in the following code into their corresponding offsets:

beq x0 x0 target

addi x0 x0 100

target: addi x0 x0 100

j target

li t0 0x5F3759DF

beq t0 t0 target

41

CS 61C Spring 2024

Example: Converting Labels into offsets

Translate the labels in the following code into their corresponding offsets:

beq x0 x0 target #+2 instructions = 8 bytes, so offset=8

addi x0 x0 100

target: addi x0 x0 100

j target

li t0 0x5F3759DF

beq t0 t0 target

42

CS 61C Spring 2024

Example: Converting Labels into offsets

Translate the labels in the following code into their corresponding offsets:

beq x0 x0 target #+2 instructions = 8 bytes, so offset=8

addi x0 x0 100

target: addi x0 x0 100

j target # -1 instruction = -4 bytes, so offset=-4

li t0 0x5F3759DF

beq t0 t0 target

43

CS 61C Spring 2024

Example: Converting Labels into offsets

Translate the labels in the following code into their corresponding offsets:

beq x0 x0 target #+2 instructions = 8 bytes, so offset=8

addi x0 x0 100

target: addi x0 x0 100

j target # -1 instruction = -4 bytes, so offset=-4

li t0 0x5F3759DF #The li here is actually 2 instructions

beq t0 t0 target #-4 instructions, so offset=-16

44

CS 61C Spring 2024

Storing offsets

● Note that all the previous offsets were multiples of 4
○ Each instruction is always going to take 4 bytes of memory, so all offsets should be multiples

of 4
● If we stored the immediate directly as a signed number, we'd always have the

last two bits 0s.
○ At the same time, we have only a limited number of bits to store an immediate, which limits the

total distance we can jump
○ If we can decide not to store those 0 bits, we can extend our immediate and allow for longer

jumps
● Therefore, we don't store the lowest bit of an offset immediate

○ Some RISC-V extensions use 16-bit instructions, so we can't choose not to store the bottom
two bits

45

CS 61C Spring 2024

B-Type

● Branch instructions also use 2 source registers and an immediate, so the format is
similar to S-Type

○ This format is sometimes referred to as SB-type for that reason
● Note that the immediate is stored in a strange pattern

○ If we had the binary 0bA BCDE FGHI JKLM (where each letter was a bit), the first box would store
0bACD EFGH and the second box would store 0bI JKLB. Bit M isn't stored.

○ This is also to simplify the underlying circuit; note that we put the MSB of our immediate in the MSB of
our instruction (to simplify sign-extension), and other than that put 10 of the remaining 11 bits in the
same position as S-type instructions

● Branch instructions have 13-bit immediates = [-4096, 4094] range, which is up to 210

instructions up/down.

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode

46

CS 61C Spring 2024

B-Type: All Instructions

47

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

48

CS 61C Spring 2024

J-Type

● Jal instructions use only 1 destination and an immediate, so we can use the
U-type format for extra immediate bits

○ This format is sometimes referred to as UJ-type for that reason
● Note that the immediate is stored in an even stranger pattern

○ If we had the binary 0bA BCDE FGHI JKLM NOPQ RSTU (where each letter was a bit), the data
would be stored as 0b AKLM NOPQ RSTJ BCDE FGHI. As before, the last bit isn't stored

○ Note that we put the MSB of our immediate in the MSB of our instruction, bits 19-12 in the
same spot as U-types, and bits 10-1 in the same spot as I-types.

● Jumps have 21-bit immediates, so up to 218 instructions up/down

20 75

31 712 11 6 0

imm[20|10:1|11|19:12] rd opcode

49

CS 61C Spring 2024

J-Type: All Instructions

50

CS 61C Spring 2024

Agenda

● Intro
● R-types
● I-types
● S-types
● U-types
● B-types
● J-types
● Concluding Notes

51

CS 61C Spring 2024

How to handle immediates larger than you can store

● R-type and U-type instructions
○ Unneeded, since they either don't have immediates or have very specific use cases that never

need to exceed the given immediate length
● I-type and S-type instructions

○ For arithmetic instructions, it's generally possible to store the immediate in a temporary first
■ Ex. if we want to do "xori t0 t1 0xDEADBEEF", we can do:

li t2 0xDEADBEEF

xor t0 t1 t2

○ For loads and stores, we can add the offset first, then do a 0-offset load (as with variable offset
loads)

52
Adjusted xor t0 t1 0xDEADBEEF
to xori in lecture

CS 61C Spring 2024

How to handle immediates larger than you can store

● B-type and J-type instructions
● If a branch is:

○ Within 1024 instructions?
■ Branch normally (ex. beq t0 t1 Label)

○ Greater than 1024 instructions?
■ Invert the branch condition, and do a j instruction instead:

bne t0 t1 Next
j Label
Next:

● If a jump is:
○ Within 218 instructions?

■ Jump normally (ex. j Label)
○ Greater than 218 instructions?

■ Do an auipc, then use jalr's immediate to offset the rest:
auipc t0 0x12345
jalr ra t0 0x678

53

CS 61C Spring 2024

Summary

● Information on instruction formats and specific opcode/funct values are
provided on the reference card here:
https://cs61c.org/sp24/pdfs/resources/reference-card.pdf

54

