
CS 70 Discrete Mathematics and Probability Theory
Spring 2023 Satish Rao and Babak Ayazifar HW 02

Due: Saturday, 2/4, 4:00 PM
Grace period until Saturday, 2/4, 6:00 PM

Sundry
Before you start writing your final homework submission, state briefly how you worked on it. Who
else did you work with? List names and email addresses. (In case of homework party, you can just
describe the group.)

1 Universal Preference

Note 4 Suppose that preferences in a stable matching instance are universal: all n jobs share the prefer-
ences C1 >C2 > · · ·>Cn and all candidates share the preferences J1 > J2 > · · ·> Jn.

(a) What pairing do we get from running the algorithm with jobs proposing? Can you prove this
happens for all n?

(b) What pairing do we get from running the algorithm with candidates proposing?

(c) What does this tell us about the number of stable pairings?

2 Nothing Can Be Better Than Something

Note 4 In the stable matching problem, suppose that some jobs and candidates have hard requirements
and might not be able to just settle for anything. In other words, each job/candidate prefers being
unmatched rather than be matched with those below a certain point in their preference list. Let the
term "entity" refer to a candidate/job. A matching could ultimately have to be partial, i.e., some
entities would and should remain unmatched.

Consequently, the notion of stability here should be adjusted a little bit to capture the autonomy of
both jobs to unilaterally fire employees and/or employees to just walk away. A matching is stable
if

• there is no matched entity who prefers being unmatched over being with their current partner;

• there is no matched/filled job and unmatched candidate that would both prefer to be matched
with each other over their current status;

CS 70, Spring 2023, HW 02 1

https://www.eecs70.org/assets/pdf/notes/n4.pdf
https://www.eecs70.org/assets/pdf/notes/n4.pdf

• there is no matched job and matched candidate that would both prefer to be matched with
each other over their current partners; and

• similarly, there is no unmatched job and matched candidate that would both prefer to be
matched with each other over their current status;

• there is no unmatched job and unmatched candidate that would both prefer to be with each
other over being unmatched.

(a) Prove that a stable pairing still exists in the case where we allow unmatched entities.

(HINT: You can approach this by introducing imaginary/virtual entities that jobs/candidates
“match” if they are unmatched. How should you adjust the preference lists of jobs/candidates,
including those of the newly introduced imaginary ones for this to work?)

(b) As you saw in the lecture, we may have different stable matchings. But interestingly, if an
entity remains unmatched in one stable matching, they must remain unmatched in any other
stable matching as well. Prove this fact by contradiction.

3 A Better Stable Pairing

Note 4 In this problem we examine a simple way to merge two different solutions to a stable matching
problem. Let R, R′ be two distinct stable pairings. Define the new pairing R∧R′ as follows:

For every job j, j’s partner in R∧R′ is whichever is better (according to j’s preference
list) of their partners in R and R′.

Also, we will say that a job/candidate prefers a pairing R to a pairing R′ if they prefers their partner
in R to their partner in R′.

(a) For this part only, consider the following example:

jobs preferences candidates preferences
A 1 > 2 > 3 > 4 1 D >C > B > A
B 2 > 1 > 4 > 3 2 C > D > A > B
C 3 > 4 > 1 > 2 3 B > A > D >C
D 4 > 3 > 2 > 1 4 A > B > D >C

R = {(A,4),(B,3),(C,1),(D,2)} and R′ = {(A,3),(B,4),(C,2),(D,1)} are stable pairings for
the example given above. Calculate R∧R′ and show that it is also stable.

(b) Prove that, for any pairings R and R′, no job prefers R or R′ to R∧R′.

(c) Prove that, for any stable pairings R and R′ where j and c are partners in R but not in R′, one
of the following holds:

CS 70, Spring 2023, HW 02 2

https://www.eecs70.org/assets/pdf/notes/n4.pdf

• j prefers R to R′ and c prefers R′ to R; or

• j prefers R′ to R and c prefers R to R′.

[Hint: Let J and C denote the sets of jobs and candidates respectively that prefer R to R′, and
J′ and C′ the sets of jobs and candidates that prefer R′ to R. Note that |J|+ |J′| = |C|+ |C′|.
(Why is this?) Show that |J| ≤ |C′| and that |J′| ≤ |C|. Deduce that |J′| = |C| and |J| = |C′|.
The claim should now follow quite easily.]

(You may assume this result in the next part even if you don’t prove it here.)

(d) Prove an interesting result: for any stable pairings R and R′, (i) R∧R′ is a pairing, and (ii) it is
also stable.

[Hint: for (i), use the results from part (c).]

4 Build-Up Error?

Note 5 What is wrong with the following "proof"? In addition to finding a counterexample, you should
explain what is fundamentally wrong with this approach, and why it demonstrates the danger of
build-up error.

False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is con-
nected.

Proof? We use induction on the number of vertices n ≥ 1.

Base case: There is only one graph with a single vertex and it has degree 0. Therefore, the base
case is vacuously true, since the if-part is false.

Inductive hypothesis: Assume the claim is true for some n ≥ 1.

Inductive step: We prove the claim is also true for n+1. Consider an undirected graph on n vertices
in which every vertex has degree at least 1. By the inductive hypothesis, this graph is connected.
Now add one more vertex x to obtain a graph on (n+1) vertices, as shown below.

n-vertex graph

z

y

x

All that remains is to check that there is a path from x to every other vertex z. Since x has degree
at least 1, there is an edge from x to some other vertex; call it y. Thus, we can obtain a path from x
to z by adjoining the edge {x,y} to the path from y to z. This proves the claim for n+1.

CS 70, Spring 2023, HW 02 3

https://www.eecs70.org/assets/pdf/notes/n5.pdf

5 Proofs in Graphs

Note 5 (a) On the axis from San Francisco traffic habits to Los Angeles traffic habits, Old California is
more towards San Francisco: that is, civilized. In Old California, all roads were one way
streets. Suppose Old California had n cities (n ≥ 2) such that for every pair of cities X and Y ,
either X had a road to Y or Y had a road to X .

Prove that there existed a city which was reachable from every other city by traveling through
at most 2 roads.

[Hint: Induction]

(b) Consider a connected graph G with n vertices which has exactly 2m vertices of odd degree,
where m > 0. Prove that there are m walks that together cover all the edges of G (i.e., each
edge of G occurs in exactly one of the m walks, and each of the walks should not contain any
particular edge more than once).

[Hint: In lecture, we have shown that a connected undirected graph has an Eulerian tour if and
only if every vertex has even degree. This fact may be useful in the proof.]

(c) Prove that any graph G is bipartite if and only if it has no tours of odd length.

[Hint: In one of the directions, consider the lengths of paths starting from a given vertex.]

6 Bipartite Graphs

Note 5 An undirected graph is bipartite if its vertices can be partitioned into two disjoint sets L, R such
that each edge connects a vertex in L to a vertex in R (so there does not exist an edge that connects
two vertices in L or two vertices in R).

(a) Suppose that a graph G is bipartite, with L and R being a bipartite partition of the vertices.
Prove that ∑

v∈L
deg(v) = ∑

v∈R
deg(v).

(b) Suppose that a graph G is bipartite, with L and R being a bipartite partition of the vertices. Let
s and t denote the average degree of vertices in L and R respectively. Prove that s/t = |R|/|L|.

(c) Prove that a graph is bipartite if and only if it can be 2-colored. (A graph can be 2-colored
if every vertex can be assigned one of two colors such that no two adjacent vertices have the
same color).

CS 70, Spring 2023, HW 02 4

https://www.eecs70.org/assets/pdf/notes/n5.pdf
https://www.eecs70.org/assets/pdf/notes/n5.pdf

	Universal Preference
	Nothing Can Be Better Than Something
	A Better Stable Pairing
	Build-Up Error?
	Proofs in Graphs
	Bipartite Graphs

