Today

Homework/No-Homework option.
Deadline is set for after Midterm.
Data on Thursday.

Finish Euclid.
Bijection/CRT/Isomorphism.
Fermat's Little Theorem.
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Quick review

Review runtime proof.
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Runtime Proof.

(define (euclid x y)
(if (= y 0)
X
(euclid y (mod x y))))

Theorem: (euclid x y) uses O(n) "divisions” where n = b(x).
Proof:

Fact:

First arg decreases by at least factor of two in two recursive calls.

After 2logy x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.

1 division per recursive call.

O(n) divisions.
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Runtime Proof (continued.)

(define (euclid x y)
(if (=y 0)
X
(euclid y (mod x y))))

Fact:
First arg decreases by at least factor of two in two recursive calls.
Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y
= true in one recursive call;

Case 2: Will show “y > x/2” = “mod(x,y) < x/2."

mod (x,y) is second argument in next recursive call,
and becomes the first argument in the next one.
When y > x/2, then

F1=1
mod (x,y) =X —y|¥] =x-y<x—x/2=x/2
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Poll

Mark correct answers.

Note: Mod(x,y) is the remainder of x divided by y and y < x.

(A) mod (x,y) <y

(B) If euclid(x,y) calls euclid(u,v) calls euclid (a,b) then a <= x/2.
(C) euclid(x,y) calls euclid (u,v) means u =y.

(D) ify >x/2, mod(x,y)=(x—y)

(E)if y > x/2, mod (x,y) < x/2
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Finding an inverse?

We showed how to efficiently tell if there is an inverse.
Extend euclid to find inverse.
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Euclid’s GCD algorithm.

(define (euclid x vy)
(if (=y 0)
X
(euclid vy (mod x y))))

Computes the ged(x, y) in O(n) divisions. (Remember n = log, x.)

For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.
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Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.
How do we find a multiplicative inverse?
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Extended GCD

Euclid’s Extended GCD Theorem: For any x, y there are integers
a, b such that

ax+by=d where d=gcd(x,y).

“Make d out of sum of multiples of x and y.”
What is multiplicative inverse of x modulo m?
By extended GCD theorem, when ged(x,m) = 1.

ax+bm=1
ax=1-bm=1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x =12 and y =35, gcd(12,35) = 1.

(3)12+(-1)35=1.

a=3and b= —1.
The multiplicative inverse of 12 (mod 35) is 3.

Check: 3(12) =36 =1 (mod 35).

9/28

Make d out of multiples of x and y..?

gcd (35,12)
gcd(12, 11) ;; gcd(1l2, 35%12)
gcd (11, 1) ;; gcd(1ll, 12%11)
gcd(1,0)
1

How did gcd get 11 from 35 and 12?7
35— |5 12=35-(2)12=11

How does gcd get 1 from 12 and 117
12— [F]11=12—(1)11 =1

Algorithm finally returns 1.
But we want 1 from sum of multiples of 35 and 127

Get 1 from 12 and 11.
1=12—-(1)11=12—-(1)(35—-(2)12)=(3)12+(—1)35
Get 11 from 35 and 12 and plugin.... Simplify. a=3and b= —1.
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Extended GCD Algorithm.

ext-gcd (x,V)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,y)
return (d, b, a - floor (x/y) * b)

Claim: Returns (d,a,b): d = ged(a,b) and d = ax + by.
Example: a— [x/y|-b=1—-0HABBM2A- 1) =3

ext-gcd (35,12)
ext-gcd (12, 11)
ext—-gcd (11, 1)
ext-gcd(1,0)

return (1,1,0) ;; 1 = (1)1 + (0) O

return (1,0,1) ;501 = (0)11 + (1)1
return (1,1,-1) ;1= (1)l12 + (-1)11
return (1,-1, 3) ;7 1 = (-1)35 +(3)12
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Extended GCD Algorithm.

ext-gcd (x,Vy)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor (x/y) * b)

Theorem: Returns (d, a,b), where d = gcd(a, b) and

d=ax+by.
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Correctness.

Proof: Strong Induction.’
Base: ext-gcd(x,0) returns (d = x,1,0) with x = (1)x -+ (0)y.

Induction Step: Returns (d, A, B) with d = Ax+ By
Ind hyp: ext-ged(y, mod (x,y)) returns (d, a, b) with
d=ay+b( mod(x,y))

ext-ged(x, y) calls ext-ged(y, mod (x,y)) so
d = ay+b-( mod(x,y))
X
= atb(x=Lly)

bx+(a— ng -b)y

And ext-ged returns (d,b,(a— | % |- b)) so theorem holds!

X
y

TAssume d is gcd(x, y) by previous proof.
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Review Proof: step.

ext-gcd (x,Vy)
if y = 0 then return(x, 1, 0)
else
(d, a, b) := ext-gcd(y, mod(x,y)
return (d, b, a - floor(x/y) =* b)

Recursively: d = ay+b(x — |

Returns (d,b,(a— (7] - b)).

%|.y) = d=bx—(a|Z]bly
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Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.

egcd(7,60).
7(0)+60(1) = 60
7(1)+60(0) = 7
7(-8)+60(1) = 4
7(9)+60(—1) 3
7(-17)+60(2) = 1

Confirm: —119+120 =1
Note: an “iterative” version of the e-gcd algorithm.
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Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: nis either prime (base cases)
or n=axband aand b can be written as product of primes.

Thm: The prime factorization of nis unique up to reordering.

Fundamental Theorem of Arithmetic: Every natural number can be
written as the a unique (up to reordering) product of primes.

Generalization: things with a “division algorithm”.
One example: polynomial division.
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No shared common factors, and products.

Claim: For x,y,z € Z* with ged(x,y) = 1 and x|yz then x|z.

Idea: x doesn’t share common factors with y
so it must divide z.

Euclid: 1 = ax + by.

Observe: x|axz and x|byz (since x|yz), and x divides the sum.
= X|axz+byz
And axz + byz = z, thus x|z.

17/28

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...
2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?

< 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
(1 0000000000000000000000000000000000000000000)5 divisions.

Internet Security: Soon.
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Fundamental Theorem of Arithmetic:uniqueness
Thm: The prime factorization of n is unique up to reordering.

Assume not.
n=pi-pz---pxand n=qi-gz---q.
Fact: If p|g1 ... q), then p = g; for some .

If ged(p,q1) =1, = p1las---q1_1 by Claim.
If gcd(p, q) = d, then d is a common factor.
If both prime, both only have 1 and themselves as factors.
Thus, p=qg,=d.
End proof of fact.

Proof by induction.
Base case: If =1, p1---pxk = 1.
But if gy is prime, only prime factoris gy and p1 =gy and I =k =1.
Induction step: From Fact: p; = g; for some j.
n/p1=p2...px and n/q; = iz Gi-
These two expressions are the same up to reordering by induction.
And py is matched to g;.

Lots of Mods

x=5 (mod 7) and x =3 (mod 5).
What is x (mod 35)?

Let's try 5. Not 3 (mod 5)!
Let’s try 3. Not 5 (mod 7)!

If x=5 (mod 7)
then x is in {5,12,19,26,33}.

Oh, only 33 is 3 (mod 5).
Hmmm... only one solution.

A bit slow for large values.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m, n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u=n(n~" (mod m)).
u=0 (mod n)
Consider v=m(m~" (mod
v=1 (mod n) v=0
Let x = au+bv.
x=a (mod m) since bv =0 (mod m) and au=a (mod m)
Xx=b (mod n) since au=0 (mod n) and bv = b (mod n)
This shows there is a solution. O

O
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Simple Chinese Remainder Theorem. Poll. CRT:isomorphism.
My love is won,
) . ) Zero and one.
I(:,:RT :’(I1m There |s)a unique solution x (mod mn). Nothing and nothing done. For m, n, god(m, n) = 1.
roof (uniqueness): What is the rhyme saying?

If not, two solutions, x and y. o y! y 9 ' X modmn<+x=a modmandx=5b modn

( )= 0 (mod m) and (x—y) =0 (mod 1) (A) Multiplying by 1, gives back number. (Does nothing.) Yy modmn«+ y=c modmandy=d modn

x—y)=0 (moc I —y)=0{mo . (B) Adding 0 gives back number. (Does nothing.)

> (x—y) is multiple of m and n (C) Rao has gone mad. Also, true that x+y mod mn «» a+¢ mod mand b+d mod n.
gcd(m,n) =1 = no common primes in factorization m and n (D) Multiplying by 0, gives 0. Mapping is “isomorphic”:
= mn|(x—y) (E) Adding one does, not too much. corresponding addition (and multiplication) operations consistent with

= x—y>mn = x,y ¢{0,...,mn—1}. mapping.
Thus, only one solution modulo mn. O All are (maybe) correct.
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(E) doesn’t have to do with the rhyme.
(C) Recall Polonius:
“Though this be madness, yet there is method in 't
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Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a”'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a1)-(a2)-(a(p—1))=1-2-(p—1) modp,
Since multiplication is commutative.

aP (- (p=1)=(1--(p—1)) modp.
Each of 2,...(p— 1) has an inverse modulo p, solve to get...

a®P V=1 modp.
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Poll

Which was used in Fermat’s theorem proof?

A) The mapping f(x) = ax mod p is a bijection.

B) Multiplying a number by 1, gives the number.

C) All nonzero numbers mod p, have an inverse.

D) Multiplying a number by 0 gives 0.

E) Mutliplying elements of sets A and B together is the same if A= B.

A), (C), and (E)
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Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
& "=1 (mod p).

What is 219" (mod 7)?

Wrong: 2101 = 2741443 — 28 (mod 7)

Fermat: 2 is relatively prime to 7. = 26 =1 (mod 7).

Correct: 2101 = 2641645 _ 25 _ 32 — 4 (mod 7).

For a prime modulus, we can reduce exponents modulo p— 1!
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Lecture in a minute.
Extended Euclid: Find a, b where ax + by = gcd(x, y).
Idea: compute a, b recursively (euclid), or iteratively.
Inverse: ax + by = ax = gcd(x,y) (mod y).
If gcd(x,y) =1, we have ax =1 (mod y)
—a=x"" (mod y).
Fundamental Theorem of Algebra: Unique prime factorization of any
natural number.
Claim: any prime that divides a number n, divides a number in any
factorization of n.
From Extended Euclid.
Induction.

Chinese Remainder Theorem:
If gcd(n,m) =1, x = a (mod n),x =b (mod m) unique sol.
Proof: Find u=1 (mod n), u=0 (mod m),
and v=0 (mod n), v=1 (mod m).
Then: x =au+bv=a (mod n)...
u=m(m~" (mod n)) (mod n) works!

Fermat: Prime p, &>~ ' =1 (mod p).
Proof Idea: f(x) = a(x) (mod p): bijectionon S={1,....p—1}. o8/28




