CS 70 Su23: Lecture 1 Propositional logic

Propositions

- A proposition is a statement that is either **true** or **false**
- Examples of propositions
 - o 2 + 2 = 4
 - 2 + 2 = 5
 - Victor took BART to get to class
- Examples that are **not** propositions
 - o **2 + 2**
 - x + 2 = 5
 - This statement is false
 - Victor is the best thing that has ever happened to CS 70

P, Q, R, and friends

- We bind propositions to variables to make them easier to work with
- Some common operations on propositions:
 - **Conjunction:** $P \land Q$
 - "P and Q"
 - True only when both P and Q are true
 - \circ **Disjunction:** $P \lor Q$
 - "P or Q"
 - True when at least one of P and Q is true
 - Negation: $\neg P$
 - not P"
 - True when P is false
 - These are called *propositional forms* (the result is itself a proposition)
- If this sounds similar to booleans, that's no coincidence
 - They're not exactly the same, but we won't go into details in this class

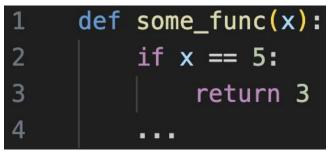
Truth tables

Enumeration of all possible values for propositions

Р	Q	ΡΛQ	ΡVQ	Р	ר ∧ P	¬P ∨ Q
Т	Т	Т	Т	F	F	Т
Т	F	F	Т	F	F	F
F	Т	F	Т	Т	F	Т
F	F	F	F	Т	Т	Т

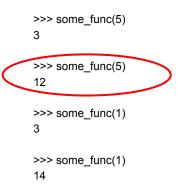
A quick detour

Consider the following code snippet:



Take note of the ellipses! More can happen afterwards

Now consider the following input/output:



Which of these would convince us there was an error executing this code?

A quick detour

Let's write this test up:

def test(x):
"""returns True if we pass, False if not"""
if x == 5 and some_func(x) != 3:
 return False
 return True

Simplifying:

A quick detour

Now let's draw out the truth table for this:

- Let **P** = x == 5
- **Q** = some_func(x) == 3
- **R** = test(x)

Р	Q	R	¬P ∨ Q
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Implication

This logical construction is so useful that it has its own name (and notation):

- Implication: P ⇒ Q (read as "P implies Q" or "if P, then Q")
 - $P \Rightarrow Q$ itself is either **true** or **false**, meaning that **it is also a proposition!**

Some terminology:

- P is the *antecedent* (or hypothesis/premise)
- Q is the *consequent* (or conclusion/outcome)
- Two propositional forms are **logically equivalent** if their truth tables are identical (for example, $P \Rightarrow Q \equiv \neg P \lor Q$)

Implication

Some example implications:

- If you stand in the rain, you will get wet
- If your total score is around 50%, you will receive some flavor of B
- If pigs can fly, cats can talk
 - implications for which P is always false are called "vacuously true"
- If you ask Victor if he likes boba, he will say yes

Implication is the basis for much of mathematics

Implication

We can define some other terms from an implication:

- The **converse** of $P \Rightarrow Q$ is $Q \Rightarrow P$
- The contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$
 - sanity check: implication and contrapositive are logically equivalent

If an implication and its converse are both true, we write this as **P** \Leftrightarrow **Q**

• read as "P if and only if Q" (iff)

Question: $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$? This is true iff $P \Leftrightarrow Q$ (does your head hurt yet?)

Quantifiers

Let's revisit our "not a proposition" from earlier: **x** + **2** = **5**

- How do we turn this into a proposition?
 - Let P(x) = "x + 2 = 5" (this is still not a proposition)
 - We need to **quantify** it over some "universe"
- Some examples:
 - P(3): For x = 3, x + 2 = 5
 - P(1): For x = 1, x + 2 = 5
 - P(1) V P(3): For x = 1 or x = 3, x + 2 = 5
 - For all integers x, x + 2 = 5 (universal quantifier)
 - There exists an integer x such that x + 2 = 5 (existential quantifier)

Quantifiers

Translating from english to math

- For every integer x, x + 2 = 5
 - ∀ x ∈ ℤ, x + 2 = 5
- There exists some integer x such that x + 2 = 5
 - o ∃ x ∈ ℤ, x + 2 = 5
- For any integer x, there is some larger integer y
 - $\circ \quad \forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ st } y > x$
 - $\circ \quad (\forall x \in \mathbb{Z}) (\exists y \in \mathbb{Z}) (y > x)$
- There is a largest integer
 - $\circ \quad \exists y \in \mathbb{Z} \text{ st } \forall x \in \mathbb{Z}, y > x$
 - $\circ \quad (\exists y \in \mathbb{Z})(\forall x \in \mathbb{Z})(y > x)$

DeMorgan's Laws

Naming something after yourself is the old way of commenting "first!"

- $\neg(P \land Q) \equiv \neg P \lor \neg Q$
- $\neg(P \lor Q) \equiv \neg P \land \neg Q$

A similar property holds for quantifiers:

- $\neg(\forall x P(x)) \equiv \exists x \neg P(x)$
- $\neg(\exists x P(x)) \equiv \forall x \neg P(x)$

Example from earlier: *not* (*x* == 5 *and some_func*(*x*) != 3)

- $\neg(x = 5 \land \text{some_func}(x) = 3) \equiv x = 5 \lor \text{some_func}(x) = 3$
- Or, with P and Q, \neg (P $\land \neg$ Q) $\equiv \neg$ P \lor Q

Next class: proofs

Let's put all of this together so we can start **proving** things are true or false!

