
CS 70 Su23: Lecture 2
Proofs



Clarifications

● element of: ∈
○ read: “in (the set)”
○ can denote membership of any set (A, B, S, whatever)

■ the fancy letters denote “common” sets:
● ℕ is the natural numbers (for this class, this includes 0!)
● ℤ is the integers

○ (example)  ∀ x ∈ ℕ: “for all x in ℕ”, “for all natural numbers

● clarification on grade distribution
○ refer to the ed post



Refresher: implication

Implication

● P ⇒ Q (“P implies Q”, “if P, then Q”)
● What does it mean for an implication to be true (or false)?

○ if P is true, Q is definitely true
○ if P is false, P ⇒ Q is (vacuously) true

■ this is different from Q being true!
○ if you can find an example where P is true and Q is false,

you know that P ⇒ Q is false

● transitive: if P ⇒ Q and Q ⇒ R, then P ⇒ R
○ why?

P Q P ⇒ Q

T T T

T F F

F T T

F F T



Claim: implication is transitive

Let P, Q, and R be propositions. Suppose P ⇒ Q and Q ⇒ R. We want to show P ⇒ R.

Suppose P.

● note this shorthand for “P is true”
○ this is analogous to shortening if my_boolean == True: to if my_boolean:

Because P ⇒ Q, we know Q is true.

Because Q ⇒ R (and Q), we know R is true.

Because P is true and R is true, P ⇒ R is true.

Therefore, (P ⇒ Q) ∧ (Q ⇒ R) ⇒ (P ⇒ R). QED



What just happened?

This is an example of a proof:

● a series of statements, each implied by the previous statement
● an incredibly powerful application of implication
● can give you logical certainty about statements (without having to fully 

enumerate a truth table)



Some terminology

Like with programs, proofs have syntax and structure:

● Start by “defining your variables” (list what you know)
○ “Let”, “Suppose”, “Pick”, “Assume”, “Consider”

● Declare your “return type” (what you want to show)
○ “Want to show”, “Claim”, “Theorem”

● Iterate line by line to “execute” (series of logical implications)
● Conclude

○ “Therefore”, “∴”
○ “QED”, “//”, “✓”, “□”

For today, these “keywords” will be italicized



We have to start from somewhere

It turns out that we can’t prove everything

● If we show P ⇒ Q, we don’t actually know anything about P
○ for example, if someone later discovers 1 + 1 ≠ 2, a lot of math will break as a result

● Things we assume (with no proof) are called definitions or axioms
● You can think of these as import statements: they just work

○ just like in 61A, we will let you know when you can “import” what



Proof types



Direct proof

● Structured as follows:
○ Want to show P ⇒ Q
○ Suppose P
○ ???
○ Profit Therefore, Q
○ Q.E.D.

● You’ll “modus ponens” in some textbooks
○ not exactly the same as “direct proof”, but close enough

We just did one of these, but let’s do another with numbers



Direct proof

Theorem: ∀ x ∈ ℕ, ∃ y ∈ ℕ st y > x.

Without loss of generality, let n be a natural number.

● because we make no assumptions about n, our argument will hold for any n ∈ ℕ

Because addition is closed under ℕ, we know n + 1 ∈ ℕ.

Therefore, there exists a natural number larger than n, and we are done. ✓



Proof by cases

Like a direct proof, but exhaustively enumerates all possible inputs

● like a switch statement or a giant if/elif/else block, there are times where this is correct, but it 
should not be your default instinct

Let’s revisit our transitivity claim from earlier, but with the truth table:



P Q R P ⇒ Q Q ⇒ R (P ⇒ Q) ∧ (Q ⇒ 
R)

P ⇒ R [(P ⇒ Q) ∧ (Q ⇒ R)] 
⇒ (P ⇒ R)

T T T T T T T T

T T F T F F F T

T F T F T F T T

T F F F T F F T

F T T T T T T T

F T F T F F T T

F F T T T T T T
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Proof by cases

Theorem: there exist irrational numbers x and y such that xy is rational.

Let x = √2 and y = √2. 

Consider xy = √2√2.

Case 1: √2√2 is rational.

● Crushed it. ✓

Case 2: √2√2 is irrational.

● Let x = √2√2 and y = √2
● xy = (√2√2)√2 = (√2)2 = 2, which is rational. ✓

● We don’t actually know (or care!) 
what x and y end up being
○ similarly, we don’t know (or care) if √2√2 is 

rational or irrational

● This is a non-constructive proof



Proof by contraposition

Still a direct proof, but on the contrapositive of the original claim

● Structured as follows:
○ Want to show P ⇒ Q
○ Suppose ¬Q
○ ???
○ Profit Therefore, ¬P
○ Q.E.D.

● You’ll “modus tollens” in some textbooks
○ not exactly the same as “proof by contraposition”, but close enough



Proof by contraposition

Theorem: ∀ a, b ∈ ℤ, a + b ≥ 15 ⇒ a ≥ 8 ∨ b ≥ 8.

Consider the contrapositive: ∀ a, b ∈ ℤ, (a < 8 ∧ b < 8) ⇒ (a + b < 15). We will prove 
the theorem with a proof by contraposition.

● Like any good anime, you must announce your move before performing it

Let a, b ∈ ℤ. Suppose a < 8 and b < 8.

Because a and b are both integers, we know a ≤ 7 and b ≤ 7.

Thus, a + b ≤ 14.

Therefore, a + b < 15. //



Proof by contradiction

The weirdest one, but (personally) the most satisfying one

● Structured as follows:
○ Want to show P
○ Assume ¬P
○ ???
○ R ⇒ ¬R (for some proposition R)
○ →←
○ Profit Therefore, P
○ Q.E.D.



Proof by contradiction

Why does this work?

● We end up showing ¬P ⇒ false (the contradiction)
● This implication is true, so what does that say about P?

○ ¬P cannot be true (else the implication would be false)

● Alternatively, look at the contrapositive: true ⇒ P
○ P cannot be false (else the implication would be false)

Thus, P must be true



Proof by contradiction
Theorem: there are an infinite number of prime numbers.

Proof by contradiction. Assume there are a finite number of primes.

● Denote them as p1, p2, …, pn, where n is the total number of primes

Let q = p1 x p2 x … x pn + 1 (q ∈ ℕ). Because q is not in our set of prime numbers, q is not prime.

However, q has no prime divisors (by construction, its remainder when divided by any prime is 1).

Thus, q is prime. →←

Therefore, there are an infinite number of primes. □



Proof by contradiction: a warning

Be careful about takeaways from contradiction proofs!

● Does this mean that the product of the first n primes + 1 is prime?
○ 2 + 1 = 3, 2 x 3 + 1 = 7, 2 x 3 x 5 + 1 = 31… maybe we’re onto something!
○ but 2 x 3 x 5 x 7 x 11 x 13 + 1 = 30031, which is divisible by 59

● That construction only holds if our original assumption is true
○ But that assumption (there are a finite number of primes) isn’t true



Proof?

Theorem: -2 = 2.

Suppose -2 = 2. Squaring both sides, we see that 4 = 4, and we are done.

What did we actually show?

● P ⇒ true (a valid claim, but not what we wanted to show)



Proof?

Theorem: 1 = 2.

We will prove a stronger claim. Let x = y, for some x, y ∈ ℤ. Claim: x = x + y.

With some algebra, we see that x2 - xy = x2 - y2.

Factoring, we have x(x - y) = (x + y)(x - y).

Dividing both sides by (x - y) yields x = x + y. //

● Dividing by 0 is an invalid step



Common mistakes

● Assuming what you want to show
○ P ⇒ P is always true

● Making a false assumption
○ This breaks the chain of implications
○ You may still arrive at the correct conclusion, but the steps will not necessarily be correct

● Trying proof by cases when there are too many cases
○ You want this when there are a small number of cases (even/odd, rational/irrational, etc)
○ It’s tempting to try proof by cases with true/false as the cases

■ This usually winds up going in circles



When to use which proof

It depends

● One is not more “valid” than the others, but may be easier to use
● The problems you’ll see in class often have an “intended” proof method

○ but that doesn’t mean a different method is worse
● If you find yourself having a hard time with one method, try a different 

one to see if that gives you a flash of insight

Aside: to disprove something, it is often sufficient to provide a 
counter-example (that is, an example where P is true, but Q is false)

● Other times, a disproof is just a proof of the negation



Alternate proof technique: pigeonhole principle
Claim: Let n and k be positive integers. Place n objects into k boxes. If n > k, then at least 
one box must contain multiple objects.

Proof by contradiction. 

Assume we place n objects into k boxes (and n > k) such that no box contains multiple 
objects.

This means the total number of objects, n, must be ≤ k (each box has at most one object).

However, there are n > k objects. →←

Therefore, if n > k, then at least one box must contain multiple objects.



● Constantly ask yourself, “why is this true?”
○ be your own annoying 4-year-old cousin/sibling

● Think of writing a proof like writing code
○ Your proof needs to “compile”

■ No undefined variables
■ Statements must connect from one to another (no skipping steps)
■ Return statement must match return type declaration

○ Proofs can have good and bad style/organization
■ The better your proofs are organized/styled, the easier they will be to read/understand 

(and grade)
● Iterate through multiple drafts

○ The whiteboard is your friend
● If you’re stuck, your TA will always ask some variation of:

○ What are you trying to show?
○ What do you know?

Advice for writing proofs



A proof technique that gets its own lecture

Next class: induction


