CS 70 Su23: Lecture 2 Proofs

Clarifications

- element of: \in
 - read: "in (the set)"
 - \circ can denote membership of any set (A, B, S, whatever)
 - the fancy letters denote "common" sets:
 - \mathbb{N} is the natural numbers (for this class, this includes 0!)
 - \mathbb{Z} is the integers
 - (example) $\forall x \in \mathbb{N}$: "for all x in \mathbb{N} ", "for all natural numbers
- clarification on grade distribution
 - refer to the ed post

Refresher: implication

Implication

- $\mathbf{P} \Rightarrow \mathbf{Q}$ ("P implies Q", "if P, then Q")
- What does it mean for an implication to be true (or false)?
 - $\circ \quad \text{ if } \textbf{P} \text{ is true, } \textbf{Q} \text{ is definitely true} \\$
 - if **P** is false, $\mathbf{P} \Rightarrow \mathbf{Q}$ is (vacuously) true
 - this is different from **Q** being true!
 - o if you can find an example where P is true and Q is false, you know that P ⇒ Q is false
- transitive: if $P \Rightarrow Q$ and $Q \Rightarrow R$, then $P \Rightarrow R$

Р	Q	P ⇒ Q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

[•] why?

Claim: implication is transitive

Let **P**, **Q**, and **R** be propositions. *Suppose* **P** \Rightarrow **Q** and **Q** \Rightarrow **R**. We *want to show* **P** \Rightarrow **R**.

Suppose **P**.

- note this shorthand for "P is true"
 - o this is analogous to shortening if my_boolean == True: to if my_boolean:

Because $\mathbf{P} \Rightarrow \mathbf{Q}$, we know \mathbf{Q} is true.

Because $\mathbf{Q} \Rightarrow \mathbf{R}$ (and \mathbf{Q}), we know \mathbf{R} is true.

Because **P** is true and **R** is true, **P** \Rightarrow **R** is true.

Therefore, $(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$. *QED*

What just happened?

This is an example of a **proof**:

- a series of statements, each *implied* by the previous statement
- an incredibly powerful application of implication
- can give you logical certainty about statements (without having to fully enumerate a truth table)

Some terminology

Like with programs, proofs have syntax and structure:

- Start by "defining your variables" (list what you know)
 - "Let", "Suppose", "Pick", "Assume", "Consider"
- Declare your "return type" (what you want to show)
 - "Want to show", "Claim", "Theorem"
- Iterate line by line to "execute" (series of logical implications)
- Conclude
 - "Therefore", "..."
 - "QED", "//", "✓", "□"

For today, these "keywords" will be *italicized*

We have to start from somewhere

It turns out that we can't prove everything

- If we show $\mathbf{P} \Rightarrow \mathbf{Q}$, we don't actually know anything about \mathbf{P}
 - for example, if someone later discovers $1 + 1 \neq 2$, a lot of math will break as a result
- Things we assume (with no proof) are called **definitions** or **axioms**
- You can think of these as import statements: they just work
 - \circ ~ just like in 61A, we will let you know when you can "import" what

Proof types

Direct proof

- Structured as follows:
 - Want to show $\mathbf{P} \Rightarrow \mathbf{Q}$
 - Suppose P
 - o **???**
 - Profit Therefore, **Q**
 - *Q.E.D.*
- You'll "modus ponens" in some textbooks
 - \circ $\hfill not exactly the same as "direct proof", but close enough$

We just did one of these, but let's do another with numbers

Direct proof

Theorem: $\forall x \in \mathbb{N}, \exists y \in \mathbb{N} \text{ st } y > x.$

Without loss of generality, let **n** be a natural number.

• because we make no assumptions about **n**, our argument will hold for any $n \in \mathbb{N}$

Because addition is closed under \mathbb{N} , we know **n** + 1 $\in \mathbb{N}$.

Therefore, there exists a natural number larger than **n**, and we are done. *I*

Proof by cases

Like a direct proof, but exhaustively enumerates all possible inputs

• like a switch statement or a giant if/elif/else block, there are times where this is correct, but it should not be your default instinct

Let's revisit our transitivity claim from earlier, but with the truth table:

Ρ	Q	R	P ⇒ Q	Q ⇒ R	$ (P \Rightarrow Q) \land (Q \Rightarrow R) $	P ⇒ R	$[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$
Т	Т	Т	Т	Т	т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	F	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	т	Т	Т
F	Т	F	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

Proof by cases

Theorem: there exist irrational numbers x and y such that x^y is rational.

Let $x = \sqrt{2}$ and $y = \sqrt{2}$.

Consider $x^y = \sqrt{2^{\sqrt{2}}}$.

- Case 1: $\sqrt{2^{\sqrt{2}}}$ is rational.
 - Crushed it. \checkmark

Case 2: $\sqrt{2^{\sqrt{2}}}$ is irrational.

- Let $x = \sqrt{2^{\sqrt{2}}}$ and $y = \sqrt{2}$
- $x^y = (\sqrt{2^{\sqrt{2}}})^{\sqrt{2}} = (\sqrt{2})^2 = 2$, which is rational. \checkmark

- We don't actually know (or care!) what x and y end up being
 - similarly, we don't know (or care) if $\sqrt{2^{\sqrt{2}}}$ is rational or irrational
- This is a **non-constructive** proof

Proof by contraposition

Still a direct proof, but on the **contrapositive** of the original claim

- Structured as follows:
 - Want to show $\mathbf{P} \Rightarrow \mathbf{Q}$
 - Suppose ¬**Q**
 - o **???**
 - Profit Therefore, ¬P
 - *Q.E.D.*
- You'll "modus tollens" in some textbooks
 - not exactly the same as "proof by contraposition", but close enough

Proof by contraposition

Theorem: \forall a, b $\in \mathbb{Z}$, a + b \ge 15 \Rightarrow a \ge 8 \lor b \ge 8.

Consider the contrapositive: \forall a, b $\in \mathbb{Z}$, (a < 8 \land b < 8) \Rightarrow (a + b < 15). We will prove the theorem with a proof by contraposition.

• Like any good anime, you must announce your move before performing it

Let a, b \in Z. *Suppose* a < 8 and b < 8.

Because *a* and *b* are both integers, we know $a \le 7$ and $b \le 7$.

Thus, $a + b \le 14$.

Therefore, a + b < 15. //

Proof by contradiction

The weirdest one, but (personally) the most satisfying one

- Structured as follows:
 - Want to show **P**
 - Assume ¬P
 - o **???**
 - $\mathbf{R} \Rightarrow \neg \mathbf{R}$ (for some proposition **R**)
 - $\circ \rightarrow \leftarrow$
 - Profit Therefore, P
 - *Q.E.D.*

Proof by contradiction

Why does this work?

- We end up showing ¬**P** ⇒ **false** (the contradiction)
- This implication is true, so what does that say about **P**?
 - **¬P** cannot be true (else the implication would be false)
- Alternatively, look at the contrapositive: **true** ⇒ **P**
 - **P** cannot be false (else the implication would be false)

Thus, **P** must be true

Proof by contradiction

Theorem: there are an infinite number of prime numbers.

Proof by contradiction. Assume there are a finite number of primes.

• Denote them as $p_1, p_2, ..., p_n$, where *n* is the total number of primes

Let $q = p_1 \times p_2 \times \dots \times p_n + 1$ ($q \in \mathbb{N}$). Because q is not in our set of prime numbers, <u>q is not prime</u>.

However, q has no prime divisors (by construction, its remainder when divided by any prime is 1).

Thus, <u>q is prime</u>. $\rightarrow \leftarrow$

Therefore, there are an infinite number of primes.
□

Proof by contradiction: a warning

Be careful about takeaways from contradiction proofs!

- Does this mean that the product of the first n primes + 1 is prime?
 - 2 + 1 = 3, 2 x 3 + 1 = 7, 2 x 3 x 5 + 1 = 31... maybe we're onto something!
 - but 2 x 3 x 5 x 7 x 11 x 13 + 1 = 30031, which is divisible by 59
- That construction only holds if our original assumption is true
 - But that assumption (there are a finite number of primes) isn't true

Proof?

Theorem: -2 = 2.

Suppose -2 = 2. Squaring both sides, we see that 4 = 4, and we are done.

What did we actually show?

• **P** ⇒ **true** (a valid claim, but not what we wanted to show)

Proof?

Theorem: 1 = 2.

We will prove a stronger claim. Let x = y, for some $x, y \in \mathbb{Z}$. Claim: x = x + y.

With some algebra, we see that $x^2 - xy = x^2 - y^2$.

Factoring, we have x(x - y) = (x + y)(x - y).

Dividing both sides by (x - y) yields x = x + y. //

• Dividing by 0 is an invalid step

Common mistakes

- Assuming what you want to show
 - $P \Rightarrow P$ is always true
- Making a false assumption
 - This breaks the chain of implications
 - You may still arrive at the correct conclusion, but the steps will not necessarily be correct
- Trying proof by cases when there are too many cases
 - You want this when there are a small number of cases (even/odd, rational/irrational, etc)
 - It's tempting to try proof by cases with true/false as the cases
 - This usually winds up going in circles

When to use which proof

It depends

- One is not more "valid" than the others, but may be easier to use
- The problems you'll see in class often have an "intended" proof method
 but that doesn't mean a different method is worse
- If you find yourself having a hard time with one method, try a different one to see if that gives you a flash of insight

Aside: to **disprove** something, it is often sufficient to provide a **counter-example** (that is, an example where **P** is true, but **Q** is false)

• Other times, a disproof is just a proof of the negation

Alternate proof technique: pigeonhole principle

Claim: Let **n** and **k** be positive integers. Place **n** objects into **k** boxes. If **n** > **k**, then at least one box must contain multiple objects.

Proof by contradiction.

Assume we place **n** objects into **k** boxes (and **n** > **k**) such that no box contains multiple objects.

This means the total number of objects, \mathbf{n} , must be $\leq \mathbf{k}$ (each box has at most one object).

However, there are $\mathbf{n} > \mathbf{k}$ objects. $\rightarrow \leftarrow$

Therefore, if $\mathbf{n} > \mathbf{k}$, then at least one box must contain multiple objects.

Advice for writing proofs

- Constantly ask yourself, "why is this true?"
 - be your own annoying 4-year-old cousin/sibling
- Think of writing a proof like writing code
 - Your proof needs to "compile"
 - No undefined variables
 - Statements must connect from one to another (no skipping steps)
 - Return statement must match return type declaration
 - Proofs can have good and bad style/organization
 - The better your proofs are organized/styled, the easier they will be to read/understand (and grade)
- Iterate through multiple drafts
 - The whiteboard is your friend
- If you're stuck, your TA will always ask some variation of:
 - What are you trying to show?
 - What do you know?

Next class: induction

A proof technique that gets its own lecture

