Lecture 4C: Conditional Probability (II)

UC Berkeley CS70 Summer 2023 Nikki Suzani

Combinations of Events

ANB

As we've learned, we can look at intersections of events together, and find the probability.

On Monday, I said for a coin where P(heads) = $\frac{1}{3}$:

Why are we allowed to do this?

magic coin: ever fire I flip a heads, Rheads) T

Lecture 4A - Slide 2 UC Berkeley CS70 - Nikki Suzani

Independence

> A given B

Two events are **independent** if $P(A \mid B) = P(A)$

That is, because A doesn't depend on B, the probability that A happens given
 B happened is the same as the probability that A happens.

independent: don't affect each other & Starty leeture at 12:30 2 Zandoni at Cupertino tre Center Clears ice at 11:30

UC Berkeley CS70 - Nikki Suzani Lecture 4A - Slide 3

rdcrendence

P(BIA) = P(B)

Some Independence Practice 3 of poils p(hcds)=0.6

You have two weighted coins. Coin 1 has probability **0.6** of coming up heads, and Coin 2 has probability **0.7** of coming up heads. The two coins are independent.

Some Independence Practice

Are the events "your dice roll is even" and "your dice roll is odd" **independent events**?

A:
$$\{2, 4, 6\}$$

P(A) = $\frac{3}{6} = \frac{4}{2}$

P(A NB) = $\emptyset = \emptyset$
 $0 = \frac{4}{2} \times \frac{4}{2}$

$$B:\{1,3,5\}$$
 $P(B)=36=52$

() ± 44
not independent

Some Independence Practice

Are the events "your dice roll is 1" and "your dice roll is odd" **independent** events?

dependent

Some Independence Practice

Are the events "your dice roll is a 1 or 2", and "your dice roll is odd" **independent events**?

$$A \land B : \{1\}, P(A \land B) = 6$$
ev CS70 - Nikki Suzani
$$A \land B : \{1\}, P(A \land B) = 6$$

independent

Mutual Independence

P(A 1 B) = P(A)P(B)

We can expand beyond just two events. $PCA \cap B \cap ... A_n = P(A) P(C)$

Definition 14.4 (Mutual independence). Events A_1, \ldots, A_n are said to be <u>mutually independent</u> if for every subset $I \subseteq \{1, \ldots, n\}$ with size $|I| \ge 2$,

$$\mathbb{P}[\bigcap_{i\in I}A_i] = \prod_{i\in I}\mathbb{P}[A_i]. \tag{6}$$

Back to coin tosses! How do we find P(HHHT) using the above definition?

$$P(HHHT) = P(H)HHH)P(H)P(T) = (1/3)^{3}(2/3)$$

Pairwise Independent but not Mutually Independent? We flip a fair coin twice. Let A be the event that the first flip is H, B be the event when

that the second flip is H, and C be the event that both flips are the same.

Product Rule

What if they're not independent? We can use Bayes' Rule to get an equation for $P(A \cap B)$.

Product Rule (cont.)

More generally, for any events A_1, \ldots, A_n ,

$$\mathbb{P}[\bigcap_{i=1}^n A_i] = \underline{\mathbb{P}[A_1]} \times \mathbb{P}[A_2 \mid A_1] \times \mathbb{P}[A_3 \mid A_1 \cap A_2] \times \cdots \times \mathbb{P}[A_n \mid \bigcap_{i=1}^{n-1} A_i].$$

Proof of the general product rule!

Product Rule (cont.)

Proof of the general product rule!

Product Rule:)

P(1st spade) x P(2nd | 1st) x P(3rd | 1,2 spades) x P(4th or | 1,2,3 spades) x P(5th or | 1,2,3 spades) x P(5th or | 1,2,3 spades) x P(5th or | 1,2,3 spades)

Monty Hall Revisited (with Product Rule)

Let C_i be the event that the contestant chooses door i, let P_i be the event that the prize is behind door i, and let H_i be the event that the host chooses door i.

$$P(P_1 \land C_2 \land H_3) = P(P_1)P(C_2)P(H_3)$$

$$= \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}$$

Monty Hall Revisited

Let C_i be the event that the contestant chooses door i, let P_i be the event that the prize is behind door i, and let H_i be the event that the host chooses door i.

Unions of Events

Principle of Inclusion-Exclusion (but in probability!)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

What if you have three events?

Unions of Events

Three events?

General Formula for Inclusion-Exclusion

Theorem 14.2 (Inclusion-Exclusion). Let A_1, \ldots, A_n be events in some probability space, where $n \ge 2$. Then, we have

$$P[A_1 \cup \cdots \cup A_n] = \sum_{k=1}^n (-1)^{k-1} \sum_{S \subseteq \{1, \dots, n\} : |S| = k} P[\bigcap_{i \in S} A_i]. \tag{8}$$

$$P(A \cup S \cup C) = \sum_{k=1}^n (-1)^{k-1} \sum_{S \subseteq \{1, \dots, n\} : |S| = k} P[\bigcap_{i \in S} A_i]. \tag{8}$$

$$\Rightarrow P(A \cup S \cup C) = \sum_{k=1}^n (-1)^{k-1} \sum_{S \subseteq \{1, \dots, n\} : |S| = k} P[\bigcap_{i \in S} A_i]. \tag{8}$$

PIE Matching Problem

The matching problem

UC Berkeley CS70 - Nikki Suzani

PlE Matching Problem

Occasions

P(matches at k locations):

Prenverope got pets letter I): 1. (n-2)!

Provetope gets letter I

Prov

 $\frac{2n^{-1}}{(n-k)!} = \frac{n(n-1)}{n!}$

Probability of No Matches

$$P(\text{at least}) = P(\bigcup_{i=1}^{n} A_i)$$

$$P(A_i) - \sum_{1 \leq i \leq n} \sum_{j \leq n} P(A_i A_j) + \sum_{1 \leq i \leq n} \sum_{j \leq n} \sum_{j \leq n} P(A_i A_j A_j) - \dots + (-1)^{n+1} P(A_1 A_2 \dots A_n)$$

$$P(\bigcup_{i=1}^{n}A_i) = \sum_{i=1}^{n}P(A_i) - \sum_{1\leq i< j\leq n}P(A_iA_j) + \sum_{1\leq i< j< k\leq n}P(A_iA_jA_j) - \cdots + (-1)^{n+1}P(A_1A_2\dots A_n)$$

$$Suzai$$
 - $\left(\left[-\frac{1}{2} \right] + \frac{1}{3} \right]$

P(A UB)=P(A)+P(B)-P(AM) =P(A)+P(B)

2. (Union bound) Let A_1, \ldots, A_n be events in some probability space. Then, for all $n \in \mathbb{Z}^+$,

$$\mathbb{P}[\bigcup_{i=1}^{n} A_i] \le \sum_{i=1}^{n} \mathbb{P}[A_i]. \tag{9}$$

This is also known as Boole's inequality! (Equal when **mutually exclusive**)

Proof of Union Bound

2. (Union bound) Let A_1, \ldots, A_n be events in some probability space. Then, for all $n \in \mathbb{Z}^+$,

$$\mathbb{P}[\bigcup_{i=1}^{n} A_{i}] \leq \sum_{i=1}^{n} \mathbb{P}[A_{i}]. \quad \mathcal{B} = \bigcup_{i=1}^{n} A_{i} \quad (9)$$

$$\mathbb{P}(A_{1}) \leq P(A_{1}) \leq P(A_{1})$$

$$\mathbb{P}(A_{1}) \leq \mathbb{P}(A_{1}) \leq \mathbb{P}(A_{1})$$

$$\mathbb{P}(A_{1}) \leq \mathbb{P}(A_{1})$$

=
$$P(A_{k+1} \cup B) = P(A_{k+1}) + P(B) - P(A_{k+1}) + P(B) + P(A_{k+1}) + \sum_{i=1}^{k} P(A_i)$$

= $\sum_{i=1}^{k+1} P(A_i)$

$$P(\bigcup_{i=1}^{k+1} A_i) = P(A_{k+1} \cup \bigcup_{i=1}^{k} A_i)$$

$$B: \bigcup_{i=1}^{k} A_i \quad P(\bigcup_{i=1}^{k} A_i) \leq \sum_{i=1}^{k} P(A_i)$$

$$P(A_{k+1} \cup B) \leq P(A_{k+1}) + P(B)$$

$$\leq P(A_{k+1}) + \sum_{i=1}^{k} P(A_i)$$

$$= \sum_{i=1}^{k+1} P(A_i)$$

$$= P(A_{k+1})$$
More bounds

We can also **lower bound** the chance of a union:

$$P(A_1)$$
 $P(A_2)$ $P(A_3)$
 $P(A_1 \cup A_2 \cup A_3) = 0$
 $= \max \{ P(A_1), P(A_2), \}$
 $= P(A_3)$

Bounding KPop Stans

A: event they like As: like twice

We know 30% of the class likes Blackpink, 20% of the class likes New Jeans, and 10% of the class likes Twice. Let's bound the probability that a randomly picked student likes at least one of the three KPop groups:

Lower bound: $\max \{P(A_1), P(A_2), P(A_3)\}$

Upper bound: Union bound

Bounding KPop Stans

We know 30% of the class likes Blackpink, 20% of the class likes New Jeans, and 10% of the class likes Twice. Let's bound the probability that a randomly picked student likes at least one of the three KPop groups.

Lower bound:

Bounding KPop Stans

We know 30% of the class likes Blackpink, 20% of the class likes New Jeans, and 10% of the class likes Twice. Let's bound the probability that a randomly picked student likes at least one of the three KPop groups.

Upper Bound: $P(A_1 \cup A_2 \cup A_3) \leq P(A_1) + P(A_2)$ £ 60%.

Recap

7 Powers

of leads

We learned about independence and intersections of events

Concepts of <u>mutual independence</u> and the <u>product rule</u>

We also learned about bounding and unions

- The <u>principle of inclusion-exclusion</u> (in probability)
- How to upper and lower bound the value of a union

Notes

& theropopolities For Lecture 4D, for Note 15 & 19 we're only going to be going over the definition of a random variable & different types of random variables. So feel free to ignore all the parts that talk about **expectation** until next week:)

P(AUB) = P(A)+P(B) P(AUB) = P(A)+P(B)-P(AB)

