Lecture 4D: Random Variables

UC Berkeley CS70 Summer 2023 Nikki Suzani

What is a random variable?

Definition 15.1 (Random Variable). A <u>random variable</u> X on a sample space Ω is a function $X : \Omega \to \mathbb{R}$ that assigns to each sample point $\omega \in \Omega$ a real number $X(\omega)$.

Example

We have a fair coin. Let X be a random variable corresponding to a series of two coin flips, where X is equal to the number of heads in the two coin flips.

Random Variables (cont.)

Events: X = a

Example

We have a fair coin. Let X be a random variable corresponding to a series of two coin flips, where X is equal to the number of heads in the two coin flips.

Random Variables (cont.)

Definition 15.2 (Distribution). The <u>distribution</u> of a discrete random variable X is the collection of values $\{(a, \mathbb{P}[X = a]) : a \in \mathcal{A}\}$, where \mathcal{A} is the set of all possible values taken by X.

Note: events $X = k_1$ and $X = k_2$ are **disjoint**

• The union of all events is the **sample space**, the probabilities of all the events must add to 1.

Joint Distributions for two Random Variables

Definition 15.3. The joint distribution for two discrete random variables X and Y is the collection of values $\{((a,b), \mathbb{P}[X = a, Y = b]) : a \in \mathcal{A}, b \in \mathcal{B}\}$, where \mathcal{A} is the set of all possible values taken by X and \mathcal{B} is the set of all possible values taken by Y.

Example: two dice rolls!

Joint Distributions for two Random Variables

The **marginal distribution** of X (visualization!):

Joint Distributions for Two Random Variables

$$\mathbb{P}[X=a] = \sum_{b \in \mathscr{B}} \mathbb{P}[X=a, Y=b].$$

Independence of Random Variables

Two random variables are **independent** if:

Bernoulli Random Variables

The <u>Bernoulli distribution</u> of a random variable is **defined as**:

Example Bernoulli

Example: Coin Flip with a coin where P(heads) = 1/3

Example Bernoulli

Example: Dice rolling an even number

A sum of Bernoulli RVs: Binomial

What if we have a sum of 10 independent coin flips, where each has probability $\frac{1}{3}$ of landing heads? Let X be the number of heads total.

• What is P(X = 5)?

Binomial (cont.)

More generally, a **binomial random variable** is a sum of n bernoulli random variables. Parameters:

1. 2.

P(X = k) =

Example Binomial

You roll 5 dice. What's the probability that you rolled 3 6s?

Example Binomial

Every day, Sodoi Coffee opens at 10am with probability 80%. What is the probability Sodoi Coffee is open at 10am for four days this week?

Binomial Example: Pulling balls out of a bag

Let's say there are **r** red balls and **g** green balls in a bag. If I pick from the bag 5 times **with replacement**, what's the probability I get exactly two red balls?

Hypergeometric: What if I pick without replacement?

What is the probability of getting two red balls, and then three green balls? What about RGRGG?

Hypergeometric: What if I pick without replacement?

What is the probability of getting a **specific sequence** of three green balls? What is the probability of getting three green balls in general?

Hypergeometric (cont.)

Hypergeometric: X ~ Hypergeometric(N, G, n)

Hypergeometric (cont.)

There are 13 Taylor Swift albums, three of which are "Taylor's Version". If I randomly sample three albums **without replacement** what's the chance that exactly one of them is "Taylor's Version"?

Poisson Random Variables

The Poisson distribution models **rare events** where the average number of occurrences of some event in a unit of time is λ .

Definition 19.2 (Poisson distribution). A random variable X for which

$$\mathbb{P}[X=i] = \frac{\lambda^i}{i!} e^{-\lambda}, \quad \text{for } i = 0, 1, 2, \dots$$

is said to have the Poisson distribution with parameter λ . This is abbreviated as $X \sim \text{Poisson}(\lambda)$.

Poisson (cont.)

Taylor Swift releases an average of one album a year. What's the probability she releases 2 albums this year?

Poisson & Binomial Connection

Let X ~ Binomial(n, λ / n). What is P(X = k) as n goes to infinity?

Poisson & Binomial Connection

UC Berkeley CS70 - Nikki Suzani

Sum of Independent Poisson Random Variables

Theorem 19.5. Let $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$ be independent Poisson random variables. Then, $X + Y \sim \text{Poisson}(\lambda + \mu)$.

Sum of Independent Poisson Random Variables

Sum of Independent Poisson Random Variables

Theorem 10.1 (Binomial Theorem). *For all* $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Geometric Random Variables

Another cool application is **geometric random variables.** Let's say I flip a coin that lands heads with probability **p** repeatedly until I get a head.

What's the probability it takes 5 flips to get a head?

Geometric Random Variables (cont.)

Formally, a random variable with parameter **p** where **p** is the <u>probability of</u> <u>success</u>. Continue repeatedly until you get a success.

Let X ~ Geometric(p)

P(X = k) =

Geometric Random Variables (cont.)

Check that it's a distribution!

Sum of infinite geometric sequence is,
$$a + ar^2 + ar^3 + \dots = \boxed{\frac{a}{1-r}}$$
, when $r < 1$

Lecture 4A - Slide 32

Memorylessness of Geometric RVs

A really cool property of geometric random variables

• Let's say I have a coin that flips heads with probability **p.** If I flip 10 tails in a row, what's the probability that I will get a head in 12 total flips?

Memorylessness of Geometric RVs

UC Berkeley CS70 - Nikki Suzani

Recap

- Learned about the <u>definitions of Random Variables</u>
 - Independence of Random Variables
 - Joint Distributions of Random Variables

- Types of RVs & their relations to each other
 - Bernoulli, Binomial, Hypergeometric, Poisson
 - Sum of independent Poissons is **also** a Poisson
 - Geometric
 - Memorylessness Property of Geometric RVs