odnc * AN
Qut S eyt Toger SRS
(:)L"‘v *3

Lecture 5SD:
Concentration Inequalities

UC Berkeley CS70
Summer 2023
Nikki Suzani



How do we bound probabilities?
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Option 1: Markov’s Inequality o S rone e e

Dealing with the definition of expectation — looking at non-negative random
variables.
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Option 1: Markov’s Inequality
Theorem 17.1 (Markov’s Inequality). For (i.e, X(w0) >0 forall w € Q)

with finite mean,
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for any positive constant c. Qy 1

Emphasis: Non-Negative Random Variable
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What happens if we know the (negative) lower bound?

Can we still use Markov’s?
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Coin Tosses Example KRS W
'[ N ’\’\M
We toss a coin with probability&of being heads n times. What is the probability of
getting more than 50% hegds? J> = .%_ \,\ea&&
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Cheating Chess Players e(x3=S

Chess Professionals take an average of 5 trips away from the board during a
standard chess game. What is an upper bound on the probability that Hans

Niemann takes 25 trips away? vy
ks 25 tips awey Merko | EOXD
Xis W regehie P(X20Q) ¢ C

e CRual« 4‘1 .
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P(Xec) =\-—!?CX_> C) | v
More Chess Players e A
pges wese

Chess Professionals take an average of 5 trips away from the board during a
standard chess game. What is a bound on the probability that Magnus Carlsen

takes less than 2 trips away? cou\ad
X2y £ €22 iy
e
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More Chess Players

Chess Professionals take an average of 5 trips away from the board during a
standard chess game. What is a bound on the probability that Magnus Carlsen

takes less than 2 trips away? 3
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When is Markov’s a tight bound?
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Generalized Markov’s Inequality

Theorem 17.2 (Generalized Markov’s Inequality). Let Y be an arbitrary random variable with finite
. «
mean. Then, for any positive constants c and r, g

B[]

c] <
cr

PllY| >
1\
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Generalized Markov’s Inequality Proof

Let X be an indicator variable for |Y| meanig=greater than or equal to c. \
C)
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Option 2: Chebyshev’s Inequality

Variance measures the deviation from the mean — can we use that information?
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Option 2: Chebyshev’s Inequality (Formally)

Theorem 17.3 (Chebyshev’s Inequality). For a random variable X with finite expectation E[X| = L,

VargX ) | @)
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and for any positive constant c.
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Proof of Chebyshev’s Inequality NV~
N2 weneg
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Generalized Chebyshev’s Inequality

Corollary 17 1 For any random variable X with finite expectation E[X| = U and finite standard deviation
L 1
) P[X — | 2 ko] < -,

for any constant k > 0.
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Coin Tosses Again

We toss a coin with probability 5 of being heads n times. What is the probability of

getting more than 50% heads? —9 ? 2 ﬁ-

ol
X ﬁﬁe“ds X"'%mbm\a\ C“z 3)

\Vox OX) :Y\?C\-g) = \N-3 q
éQXBer
Chelysevd

2/ \ \ ¢ P 19

UC Berkeley CS70 - Nikki Suzani



TUVA=ME= )
™Y



Let's talk about estimation

Say we have a coin — but don’t know the probability it flips heads. How can we

guess? F\\P o Com & ounch K twmeyg —s ey
X # & T {3\\@4\»3 Lo N KNWVRY
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Let's talk about confidence

We can’t be sure that our estimate is good, though. So we want to bound the

probability that we're wrong. 3”&
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Estimating Probabiliti

Let’s put it into practice.

w many samples do we nee

&e confident?
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Estimating Probabilities

Let’s put it into practice. How many samples do we need to be confident?

Lecture 4A - Slide

UC Berkeley CS70 - Nikki Suzani 73



Estimating Probabilities
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Example: How many people play chess?

We want to estimate the percent of people in CS70 who play chess. Let's say we
want an error of 0.05, and confidence of 90%, How many people do | need to

sample? __L_ E _ Ci
N 2 g, I=5§=0
4¢? ¢=0\

S g\,- - Q"DC)S
= HOON O\ 1000
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What about estimating a value?
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What about estimating a value?
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\oriomte = &= SD=-"
Average Rating of Chess Players on Course Staff

Many people on CS70 Course Staff play chess. Some are... better than others.
Let’s say our lower bound on the mean rating is 600, and our upper bound on

P

variance is 100. We want to be 70% confident in our guess, with an error level of

/—
0.05. How many people do we need to ask? -\
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When is Chebyshev’s a tight bound?
meemot O R SD ok \

(—k, with probability j

Z =< 0, with probability 1 — k—lz

k,  with probability i
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The Law of Large Numbers

Intuition: We expect a random variable to converge to its average.
—
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The Law of Large Numbers (Formally)

Theorem 17.4 (Law of Large Numbers). Let X1,X5,. .., be a sequence of i.i.d. (independent and identically
distributed) random variables with common finite expectation E[X;| = u for all i. Then, their partial sums

-{,m2+...+Xn satisfy s\,/vl 0‘-\,\ MW £ _Q_h({ G LotV 9~
A oAwerwise
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(If time) Derivation of Variance of the Poisson

Let X ~ Poisson(A). What is Var(X)?
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Recap

Learned about Concentration Inequalities:

e Markov's Inequality

o Generalized Markov’s Inequality

e Chebyshev’s Inequality

o Confidence Levels!!
ilili————

Learned about thel Law of Large Numbers: )

e Proof using Chebyshev’s! /
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