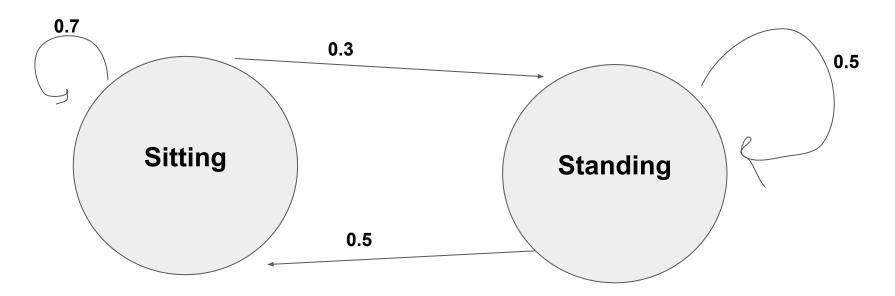
Lecture 6A: Markov Chains

UC Berkeley CS70 Summer 2023 Nikki Suzani

Finite Markov Chains

Markov Chains help us to visualize **transitions** between different **states**.



Finite Markov Chains (Formally)

Markov Chains are defined by two key components:

State Space – set of all possible states that your experiment can exist in (all possible values of the random variable in the Markov Chain). i.e. {sitting, standing}.

Finite Markov Chains (Formally)

Markov Chains are defined by two key components:

 Transition Probability Matrix – the probability of moving from any one state to any other state

Key Information!

The **most** important thing about Markov chains, is that the chain is **amnesic** (**memoryless**) meaning each step should **only** depend on the previous state.

Can the following be modeled as a Markov Chain?

You have a coin that you flip continuously until you get **two consecutive** heads.

Modeled as a Markov Chain?

You're drawing **without replacement** from a bag with a purple, red, and green ball. Model the outcomes of your draws.

More Vocab!

Often for Markov Chain questions you're given an **initial distribution**. This tells you the probability of being in **each state** when you start. Each probability should be >= 0, and they should sum to 1.

Using the initial distribution

For some Markov Chain, let π = [0.3 0.4 0.2 0.1] for states A, B, and C respectively.



Using the initial distribution

Let $\pi = [0.3 \ 0.4 \ 0.2 \ 0.1]$. After **one step**, what is the probability of being in **state** A?

Generalize!

Let's look at the new matrix that we make. Now, what's the probability of being in State A after **two steps**?

Generalize

How do we find the probability of being in a certain state after **n steps**?

More Vocab!

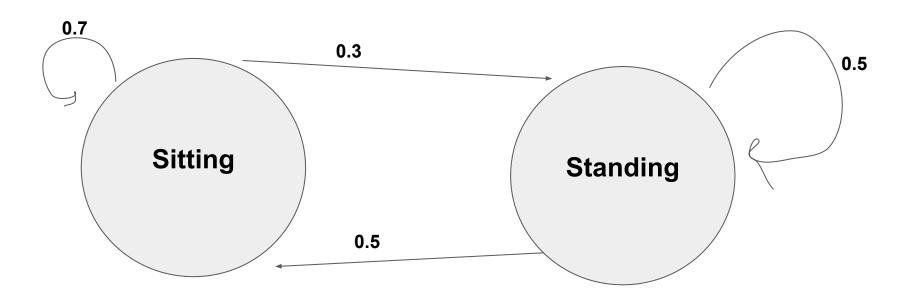
An **invariant (or stationary)** distribution π is a starting distribution such that:

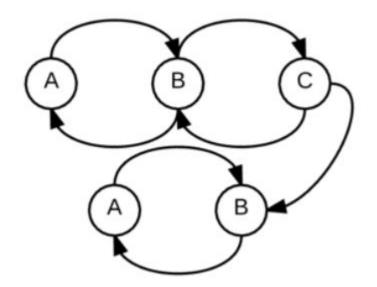
$$\bullet$$
 $\pi = \pi P$

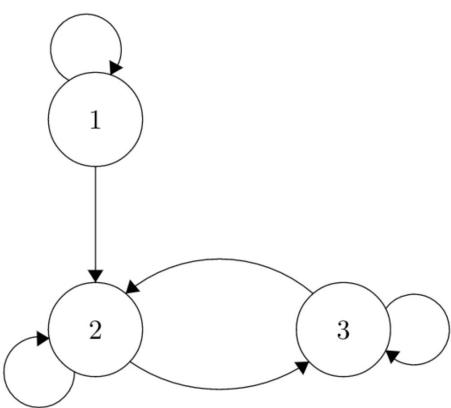
More Vocab!

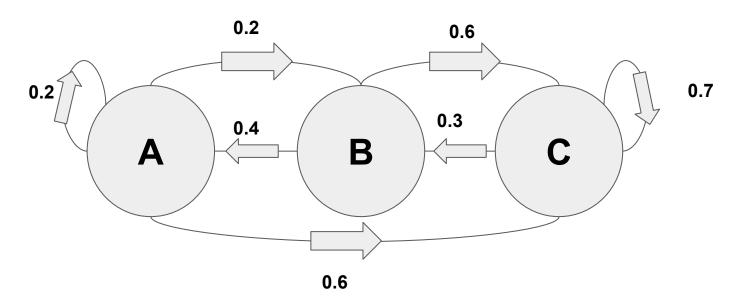
A Markov chain is said to be **irreducible** if you can go from any **starting space** to any other **ending space**.

 Specifically, there is a path of nonzero (positive) probability that goes from state i to state j for all i & j.









More Vocab!

A **state** i has **period** d if the Markov Chain can only come back to **i** in multiples of **d**.

A Markov Chain is said to be aperiodic if the period of the chain is 1 –
 meaning at any step, you have nonzero probability of being in any state.

Aperiodic (Formally)

Theorem 22.4. Consider an irreducible Markov chain on $\mathscr X$ with transition probability matrix P. Define

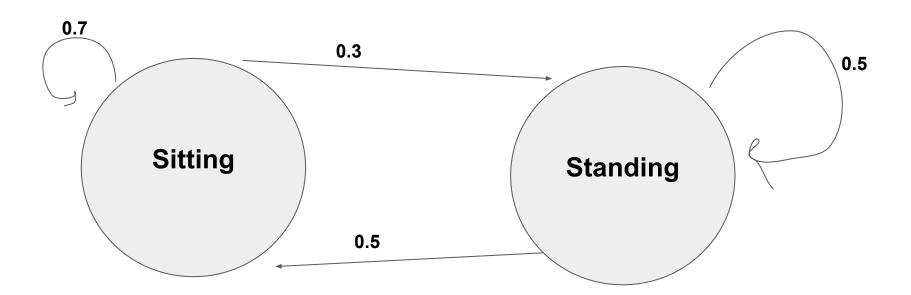
$$d(i) := g.c.d\{n > 0 \mid P^{n}(i,i) = Pr[X_n = i | X_0 = i] > 0\}, i \in \mathcal{X}.$$
(16)

(a) Then, d(i) has the same value for all $i \in \mathcal{X}$. If that value is 1, the Markov chain is said to be aperiodic. Otherwise, it is said to be periodic with period d.

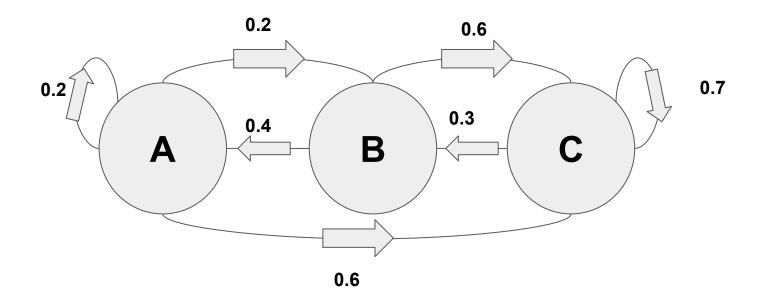
Aperiodic Quick Tip!

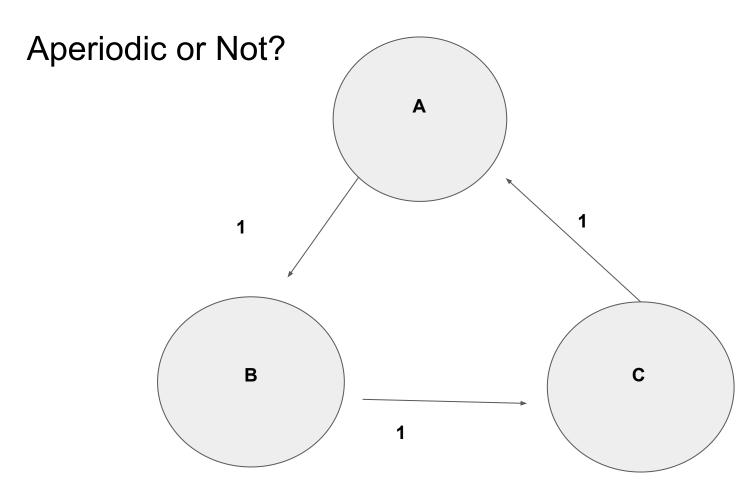
If any state in an irreducible Markov Chain has a **self-loop with nonzero probability**, then it is **aperiodic**.

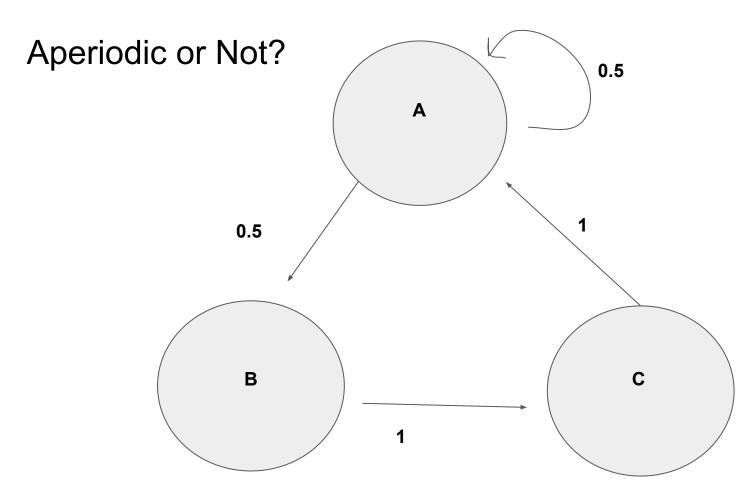
Aperiodic or Not?



Aperiodic or Not?







More Vocab!

If a Markov Chain is **finite** and **irreducible**, then its invariant distribution both **exists** and **is unique**. If it is **aperiodic** as well, it **converges to the invariant distribution**.

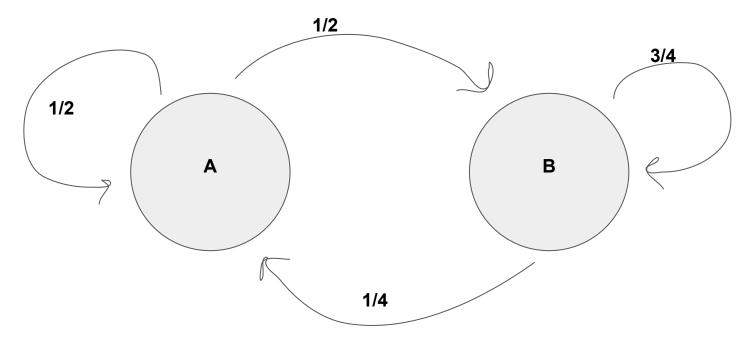
Solving for Invariant

1. Write out transition probability matrix

2. Write out detailed balance equations – using $\pi = \pi P$ and the fact that the starting probabilities have to add to 1.

3. Solve:)

Solving for Invariant



Solving for Invariant

Special Case: Doubly Stochastic Matrices

A matrix is **doubly stochastic** if all the rows and all the columns sum to 1.

Doubly Stochastic Invariant

Suppose you have an **irreducible**, **aperiodic** finite Markov Chain. Prove that the uniform distribution is the invariant distribution.

Doubly Stochastic Example!

You roll a dice **n** times for some large **n**. What's the probability that the sum of all the dice rolls is a multiple of 7?

Doubly Stochastic Example!

Recap

Learned about Markov Chains:

- Represent states and transitions where the next state only depends on the previous state
- Learned about invariant (or stationary) distributions, and how irreducible/aperiodic relates to them
- Learned how to solve for stationary distributions in general, and especially in doubly stochastic matrices