CS 70 Su23: Lecture 24 (6B)

Markov Chains II: hitting time, probability of state A before state B

A quick recap

Markov chain (it's a directed graph), defined by:

- States (nodes)
- Transition probabilities (edges)
 - self-edges are allowed
 - it's probability, so all the outgoing edges have to add to 1
 - do all incoming edges have to add to 1?¹
- Initial probabilities (how likely you are to start at each state)

Markov chains are **amnesic**: the transition probabilities only depend on the current state

Hitting time

Given a starting state in a Markov Chain, what is the expected number of steps (transitions) until we reach some other state?

- If we start at **A**, how many steps, on average, will it take to get to C?
 - 2 steps

First-step equations

Random variables are our friend. Let's define:

• T_{AB} = the number of steps it takes to go from state A to state B

If you only care about one of the states, you can simplify this (for example):

- T_A = the number of steps it takes to go from A to C
 this is useful shorthand if your markov chain has a clear "end state"

We are interested in computing $E[T_A]$, for some state A (to reach C).

You will also see this as a function (the notes uses β):

- T(A) = the *expected* number of steps to reach state C from state A
 - Note: this is an expectation! Be careful when reading to double check what the variable represents

First-step equations

What is T(C)?

• E[T_{cc}] = 0 (you're already there!)

Example 1: first-step equations (with numbers)

What is T(A)? What is T(B)?

• $T(A) = 1 + \frac{1}{5}T(A) + \frac{4}{5}T(B)$

• $T(B) = 1 + \frac{1}{2}T(A) + \frac{1}{2}T(C)$

Example 1: first-step equations (with numbers)

 $T(A) = 1 + \frac{1}{5}T(A) + \frac{6}{5}T(B)$ $\frac{7}{5}T(A) = \frac{9}{5}$

 $T(B) = 1 + \frac{1}{2}T(A) + \frac{1}{2}T(C) \qquad T(A) = \frac{9}{2}$

 $= 1 + \frac{1}{2}T(A)$ $T(A) = 1 + \frac{1}{5}T(A) + \frac{4}{5}(1 + \frac{1}{2}T(A))$ $= 1 + \frac{1}{5}T(A) + \frac{4}{5} + \frac{2}{5}T(A)$ $= 9/5 + \frac{3}{5}T(A)$

First-step equations

In general, the expected number of steps to state Y from state X is:

- $T_{Y}(X) = 1 + \sum_{Z} \Pr[X \rightarrow Z] \cdot T_{Y}(Z)$
- $T_{Y}(Y) = 0$

In other words, we have to go somewhere, and with some probability, we end up at a different state, which takes some expected number of steps to get to state Y (if you start when you want to go, it takes 0 steps to get there).

(again, if Y is implied, you can omit it)

Example 2: more numbers

Example 3: Geometric... again

How can we represent a geometric distribution as a Markov Chain?

Example 4: Geometric... again (again)

Now what if we want to flip until we get 2 heads in a row?

Example 4: Geometric... again (again)

T(0) = 1 + pT(1) + (1 - p)T(0)

T(1) = 1 + pT(2) + (1 - p)T(0)= 1 + T(0) - pT(0) T(0) = 1 + p(1 + T(0) - pT(0)) + (1 - p)T(0)

 $T(0) = 1 + p + pT(0) - p^2T(0) + T(0) - pT(0)$

 $T(0) = (1 + p)/p^2$

Return time

We start at state X. What is the expected number of steps until we *return* to state X?

• $R_X = 1 + \sum_Z \Pr[X \rightarrow Z] \cdot T_X(Z)$

In other words, we have to go somewhere, and with some probability, we end up at a different state, which takes some expected number of steps to get to state 1.

Example 5: the numbers from before

We start in state 1. What is R_1 ? $R_1 = 1 + \frac{14}{4} T(1) + \frac{1}{2}T(2) + \frac{1}{4}T(3)$ $= 1 + 0 + \frac{1}{2} \cdot \frac{7}{3} + \frac{1}{4} \cdot 2$ = 6/6 + 7/6 + 3/6 = 16/6= 8/3

Probability of state A before state B

Given a starting state, what is the probability we reach some state before some other state?

Probability of state A before state B

Let P(X) = the probability that you reach state A before state B from state X (for some specified states A and B).

- This is, again, a function (the notes uses α)
- If you want to be very precise, you can use subscripts for clarity
 - Example: $P_{CB}(X)$ = probability if reaching C before B, starting from X

Example 6: probability of C before B

Example 6: probability of C before B

Returning to our example:

What is P(A)?

 $P(A) = Pr[A \rightarrow A] \cdot P(A)$ $+ Pr[A \rightarrow B] \cdot P(B)$ $+ Pr[A \rightarrow C] \cdot P(C)$ $= Pr[A \rightarrow A] \cdot P(A)$

+ $Pr[A \rightarrow C] \cdot P(C)$

Probability of state A before state B

In general, the probability of reaching state A before state B, starting from state X, is:

- $P_{AB}(X) = \sum_{Y} Pr[X \rightarrow Y] \cdot P_{AB}(Y)$
- P_{AB}(A) = 1
- $P_{AB}(B) = 0$

(again, if A and B are implied, you can omit them)

Example 7: gamble responsibly

You are playing a game where you flip a coin with probability p. If it lands heads, you win \$1. Otherwise, you lose \$1. The game ends when you have \$0. What is the probability that you earn \$N before you run out of money?

Let's write out the equations:

- P(0) = 0
- P(N) = 1
- $P(n) = p \cdot P(n + 1) + (1 p) \cdot P(n 1)$, for 0 < n < N

With the magic of algebra, we have $P(n) = (1 - ((1 - p)/p)^n) / (1 - ((1 - p)/p)^N)$

