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Gaussian (Normal) Random Variables

A normal (or Gaussian) distribution is a distribution with two parameters, μ – its 
expectation – and σ2 – its variance.
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Some Cool Properties of the Normal Distribution
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Gaussian (Normal) Random Variables (cont.)

CDF of the Normal(0, 1) distribution is referred to as 𝛷(x).
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“Scaling” Normal Random Variables
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“Scaling” Normal Random Variables (cont.)

where Y is standard normal.

This allows us to use the CDF!
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Sum of Independent Normal RVs
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Central Limit Theorem

Let X1, X2, … Xn be a sequence of n i.i.d. random variables with E(Xi) = μ and 
Var(Xi) = σ2. When n is large, both the sample sum and the sample mean can be 
approximated as normal random variables.
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Sample Sum Expectation & Variance

Let X1, X2, … Xn be a sequence of n i.i.d. random variables with E(Xi) = μ and 
Var(Xi) = σ2. Find the distribution of Sn = X1 + … + Xn for large n.
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Scaling to Standard Normal
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Sample Mean Expectation and Variance

Let X1, X2, … Xn be a sequence of n i.i.d. random variables with E(Xi) = μ and 
Var(Xi) = σ2. Find the distribution of X-bar = Sn/n = X1 + … + Xn for large n.
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Scaling to Standard Normal
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How to Solve CLT Questions

1. Identify that you can use CLT – sample mean/sum of i.i.d. random variables for 
large n.

2. Calculate the Mean and Variance of the sample mean/sum

3. Convert your value into the standard normal value (subtract mean, divide by 
standard deviation)

4. Use 𝛷(standard normal value)
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Dice Example

Lecture 4A - Slide 
14



UC Berkeley CS70 - Nikki Suzani

Dice Example (cont.) 
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Exam Example

N students take an exam where the average is 50, and the variance is 5. Let Sn be 
the sum of their n scores, and assume all of their scores are independent. What is 
the probability that their average score is greater than 72.5?
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Exam Example
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Polling Example

We want to estimate the true proportion p of students who like Olivia Rodrigo 
more than Joshua Bassett.  We poll n people, for large n. How many people do 
we have to poll to get an estimate with accuracy 0.1 with 95% probability?
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Polling Example
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Poisson Example

The number of times I listen to Olivia Rodrigo’s Vampire is modeled by a 
Poisson(λ) distribution per day, but I don’t know λ. All I know about λ is that it is at 
most 20. If I track the number of times I listen to Vampire each day, for a large 
number of days, how many days do I need to track to get a 95% confidence 
interval for λ of width 3.
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Poisson Example (cont.)

Lecture 4A - Slide 
21



UC Berkeley CS70 - Nikki Suzani

Poisson Example (cont.)
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Normal as a Limiting Distribution of Binomial

When n is large, and p is not small, the normal distribution is a good 
approximation to the binomial.  Source: 
https://math.stackexchange.com/questions/3278070/approximation-of-binomial-dis
tribution-poisson-vs-normal-distribution.
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(If time)
The following are slides that didn’t make it into recording 
for 6C so I will redo them if there is time, so that they can 
be in a recording.
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Exponential Distribution

Def: For some λ > 0, a continuous random variable X is an exponential random 
variable with parameter λ if it has the following PDF,

We can write X ~ Exp(λ) if is an exponential random variable.

Let’s check that f(x) satisfies the two PDF properties
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Expectation & Variance of Exponential

For a random variable X ~ Exp(λ),
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Example Exponential

Going back to our terrible alarm clock, we know the behavior is:

Once plugged in, the alarm will randomly ring once after some amount of time, 
however we know it goes off at a rate of 1 time every 10 minutes.

Let X be the amount of time it takes the alarm to sound. X ~ Exp(1/10), because 
our rate of rings is 1/10 per minute.

How many minutes should we expect to wait before the alarm rings?
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An important property to note

Proof:

Lecture 4A - Slide 
28



UC Berkeley CS70 - Nikki Suzani

Exponential Relation to Geometric

Let’s try to draw a more rigorous connection between Exponential and Geometric 
distributions. Take our Geometric r.v. and consider running trials after every d 
seconds. The probability of a success is p = λ𝛅.

Then, let Y denote the amount of time/seconds before a successful trial:

To translate our trials to a continuum, consider taking the limit of d → 0. Then, for 
any time t,
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Recap

Discussed Gaussian (Normal) Random Variables

● Properties of Normal Distributions
● Scaling Normal Distributions
● Summing Independent Random Normal Variables
● The CDF of a Normal Distribution
● Solving Problems using the Central Limit Theorem (CLT)
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