Lecture 6D:
Continuous Probability II

UC Berkeley CS70



Gaussian (Normal) Random Variables

A normal (or Gaussian) distribution is a distribution with two parameters, y —its
expectation — and 0% — its variance.
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Some Cool Properties of the Normal Distribution
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Gaussian (Normal) Random Variables (cont.)

CDF of the Normal(0, 1) distribution is referred to as @(x).

1 & :
dx)=P(Z <Xx) = x/—Z_E / exXp —u? du.
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“Scaling” Normal Random Variables

Lemma 21.1. If X ~ N(u,0?), then Y = )% ~ N(0,1). Equivalently, if Y ~ N(0,1), then
X =o0Y+u~N(u,o?).
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“Scaling” Normal Random Variables (cont.)

IP)[X S a] — IP)[Y S a—u] where Y is standard normal.

o)

This allows us to use the CDF!
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Sum of Independent Normal RVs

Corollary 21.1. Let X ~ N(ux,03) and Y ~ N(Uy,o2) be independent normal random variables. Then
for any constants a,b € R, the random variable Z = aX + bY is also normally distributed with mean |l =
aply + by and variance 6* = a*c +b*03.
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Central Limit Theorem

Let X,, X, ... X_be a sequence of n i.i.d. random variables with E(X) = p and
Var(X) = o2. When n is large, both the sample sum and the sample mean can be

approximated as normal random variables.
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Sample Sum Expectation & Variance

Let X,, X, ... X_be a sequence of n i.i.d. random variables with E(X) = p and
Var(X) = 2. Find the distribution of S =X, +...+X forlarge n.
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Scaling to Standard Normal
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Sample Mean Expectation and Variance

Let X,, X, ... X_be a sequence of n i.i.d. random variables with E(X) = p and

Var(X) = 2. Find the distribution of X-bar = S/n=X +..+X forlarge n.

Lecture 4A - Slide

UC Berkeley CS70 - Nikki Suzani 1



Scaling to Standard Normal
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How to Solve CLT Questions

1. Identify that you can use CLT — sample mean/sum of i.i.d. random variables for
large n.

2. Calculate the Mean and Variance of the sample mean/sum

3. Convert your value into the standard normal value (subtract mean, divide by
standard deviation)

4. Use @(standard normal value)
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Dice Example

2. My friend and | gamble on rolls of a die. Each time the die is rolled,

« my friend gives me a dollar if the number of spots is five or six,
| give my friend a dollar if the number of spots is one or two,
* and no money changes hands if the number of spots is three or four.

If we play this game 400 times, approximately what is the chance that my net gain is more than 20
dollars?
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Dice Example (cont.)
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Exam Example

N students take an exam where the average is 50, and the variance is 5. Let Sn be
the sum of their n scores, and assume all of their scores are independent. What is

the probability that their average score is greater than 72.5?
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Exam Example
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Polling Example

We want to estimate the true proportion p of students who like Olivia Rodrigo

more than Joshua Bassett. We poll n people, for large n. How many people do
we have to poll to get an estimate with accuracy 0.1 with 95% probability?

S . Lecture 4A - Slide
UC Berkeley CS70 - Nikki Suzani 18



Polling Example
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Poisson Example

The number of times | listen to Olivia Rodrigo’s Vampire is modeled by a
Poisson(A) distribution per day, but | don’t know A. All | know about A is that it is at
most 20. If | track the number of times | listen to Vampire each day, for a large
number of days, how many days do | need to track to get a 95% confidence
interval for A of width 3.
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Poisson Example (cont.)

Lecture 4A - Slide

UC Berkeley CS70 - Nikki Suzani 71



Poisson Example (cont.)
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Normal as a Limiting Distribution of Binomial

When n is large, and p is not small, the normal distribution is a good

approximation to the binomial. Source:

https://math.stackexchange.com/questions/3278070/approximation-of-binomial-dis

tribution-poisson-vs-normal-distribution.
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https://math.stackexchange.com/questions/3278070/approximation-of-binomial-distribution-poisson-vs-normal-distribution
https://math.stackexchange.com/questions/3278070/approximation-of-binomial-distribution-poisson-vs-normal-distribution

(If time)
The following are slides that didn’t make it into recording

for 6C so | will redo them if there is time, so that they can
be in a recording.
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Exponential Distribution

Def: For some A > 0, a continuous random variable X is an exponential random
variable with parameter A if it has the following PDF,

Ae Ax . x>0
flx) = ;
0, otherwise,

We can write X ~ Exp(A) if is an exponential random variable.

Let’s check that f(x) satisfies the two PDF properties
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Expectation & Variance of Exponential

For a random variable X ~ Exp(A),

E[X] = % and Var(X) = %
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Example Exponential

Going back to our terrible alarm clock, we know the behavior is:

Once plugged in, the alarm will randomly ring once after some amount of time,
however we know it goes off at a rate of 1 time every 10 minutes.

Let X be the amount of time it takes the alarm to sound. X ~ Exp(1/10), because
our rate of rings is 1/10 per minute.

How many minutes should we expect to wait before the alarm rings?
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An important property to note

PX >t]=eM

Proof:
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Exponential Relation to Geometric

Let’s try to draw a more rigorous connection between Exponential and Geometric
distributions. Take our Geometric r.v. and consider running trials after every d
seconds. The probability of a success is p = Ad.

Then, let Y denote the amount of time/seconds before a successful trial:
PlY > k8] = (1 —p)* = (1-A8)¥,

To translate our trials to a continuum, consider taking the limit of d — 0. Then, for
any time t,

PY >¢]=P[Y > (£)8] = (1-A8)/° me™™
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Recap

Discussed Gaussian (Normal) Random Variables

Properties of Normal Distributions

Scaling Normal Distributions

Summing Independent Random Normal Variables

The CDF of a Normal Distribution

Solving Problems using the Central Limit Theorem (CLT)
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