Lecture 7A: Continuous Probability III

UC Berkeley CS70 Summer 2023 Nikki Suzani

1

Exponential Distribution

Def: For some $\lambda > 0$, a continuous random variable X is an <u>exponential random</u> <u>variable with parameter λ if it has the following PDF,</u>

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{otherwise,} \end{cases}$$

We can write $X \sim Exp(\lambda)$ if is an exponential random variable.

Let's check that f(x) satisfies the two PDF properties

Expectation & Variance of Exponential

For a random variable X ~ Exp(λ), $\mathbb{E}[X] = \frac{1}{\lambda}$

Expectation & Variance of Exponential

For a random variable X ~ Exp(λ), Var(X) = $\frac{1}{\lambda^2}$.

Example Exponential

Going back to our terrible alarm clock, we know the behavior is:

Once plugged in, the alarm will randomly ring once after some amount of time, however we know it goes off at a rate of 1 time every 10 minutes.

Let X be the amount of time it takes the alarm to sound. $X \sim Exp(1/10)$, because our rate of rings is 1/10 per minute.

How many minutes should we expect to wait before the alarm rings?

An important property to note

$$\mathbb{P}[X > t] = e^{-\lambda t}$$

Proof:

Lecture 4A - Slide 6

Exponential Relation to Geometric

Let's try to draw a more rigorous connection between Exponential and Geometric distributions. Take our Geometric r.v. and consider running trials after every δ seconds. The probability of a success is $p = \lambda \delta$.

Then, let Y denote the amount of time/seconds before a successful trial:

$$\mathbb{P}[Y > k\delta] = (1-p)^k = (1-\lambda\delta)^k,$$

To translate our trials to a continuum, consider taking the limit of $d \rightarrow 0$. Then, for any time t,

$$\mathbb{P}[Y > t] = \mathbb{P}[Y > (\frac{t}{\delta})\delta] = (1 - \lambda\delta)^{t/\delta} \approx e^{-\lambda t}$$

Continuous Example!

Let V and W have the joint density $12e^{-v-3w}$ for $0 < v < w < \infty$. Find the distribution of V.

Continuous Example

Let V and W have the joint density $12e^{-v-3w}$ for $0 < v < w < \infty$. Find the distribution of V.

Continuous Example

Let V and W have the joint density $12e^{-v-3w}$ for $0 < v < w < \infty$. Find P(W > 3V)

Continuous Example

Let V and W have the joint density $12e^{-v-3w}$ for $0 < v < w < \infty$. Find P(W > 3V)

Another Continuous Example!

Let f(x) = k(2x+3) for $-1 \le x \le 2$, and 0 otherwise. What is k?

Another Continuous Example!

Let f(x) = k(2x+3) for $-1 \le x \le 2$, and 0 otherwise. What is k?

Min of Uniforms

We have n uniform(0, 2) random variables. For 0 < x < 2, what is the probability that the minimum of the RVs is $\leq x$?

Min of Exponentials

We have n exponential random variables with different parameters. Find the distribution of their minimum.

Transforming Exponentials

Let X be exponential(λ) and let Y = 3X. What distribution does Y follow?

Exponential

Let T have the exponential(λ) distribution and let N be the integer part of T. What is the distribution of N?

Exponential (cont.)

Let T have the exponential(λ) distribution and let N be the integer part of T. What is the distribution of N?

Combining Exponential and Uniform

Let X ~ $Exp(\lambda)$ and let Y be Uniform [0, X]. What is the joint distribution of X and Y?

Combining Exponential and Uniform

Let X ~ $Exp(\lambda)$ and let Y be Uniform [0, X]. What is the joint distribution of X and Y?

Continuous Tail Sum (non-negative RV X)

$$\mathbf{E}(X) = \int_0^\infty [1 - F(x)] dx = \int_0^\infty \mathbf{P}(X > x) dx \; .$$

Continuous Tail Sum (non-negative RV X)

UC Berkeley CS70 - Nikki Suzani

Memoryless Exponentials

For $X \sim Exp(\lambda)$ find P(X > s + n | X > n)

Memoryless Exponentials

For $X \sim Exp(\lambda)$ find P(X > s + t | X > t)

If you like probability :))

Recap

Practiced Continuous R.V.s:

- Finding marginals from joint densities
- Finding constants of integration, E(X), Var(X) from PDF

More Properties of Exponential/Uniform:

- Min of Exponentials/Uniforms
- Memoryless Property of Exponential
- Continuous Tail Sum