
Tutorial on Cadence Genus

Synthesis Solution

EE 201A – VLSI Design Automation – Winter 2024

UCLA Electrical Engineering

Instructor: Prof. Puneet Gupta

TA: George Karfakis

Based on slides from: Mark Gottscho/Vishesh Dokani

Logic Synthesis

• RTL: Register-Transfer-Level description of logic design

(e.g., c = a + b)
– Allows both Behavioral (add two numbers) and structural (connect module A to

module B) design styles

– Focus on higher-level functionality, e.g. sequential logic, pipeline stages, maybe

even micro-architectural design

– Verilog/VHDL are industry standard hardware description languages (HDL) used

for RTL

• Logic synthesis: Automatically reduce RTL to gate-level logic

(e.g., AND, NOT, wires, etc.) with help of a logic library
– Still represented in Verilog, but lose intuition of higher abstraction. Purely

structural design style

– In fact, you can write your own gate-level logic implementation! Try it … ;)

• … and you will rapidly appreciate the power of logic synthesis!

– RTL s1494.v 🡪 gate-level s1494_synth.v

• Software analogy: compile C to assembly language

RTL vs. Gate-Level Example in Verilog

• RTL:
always @(posedge clock)

if(add1 && add2) r <= r+3;

else if(add2) r <= r+2;

else if(add1) r <= r+1;

• Logic gates:
AOI22_X1 g15017(.A1 (n_212), .A2 (n_249), .B1 (n_237), .B2

(n_210), .ZN (n_322));

NOR2_X1 g15020(.A1 (n_211), .A2 (n_210), .ZN (n_246));

NOR2_X1 g15021(.A1 (n_275), .A2 (n_148), .ZN (n_209));

NOR2_X1 g15023(.A1 (n_258), .A2 (n_117), .ZN (n_208));

INV_X1 g15024(.A (n_207), .ZN (n_289));

Nangate* Open Cell Library
*not NANDgate! ☺ www.nangate.com

• Commonly used set of standard cells that are

treated as primitives in the HDL
– Needed for logic synthesis as well as physical design

• Includes logic representation
– AND gate example: ZN = (A1 & A2);

• Includes physical design information
– Cell timing

• Capacitance, Delay, Transition time, etc.

– Cell power

• Leakage power, Capacitance, etc.

– Cell area

• Different libraries for different design corners
– NangateOpenCellLibrary_typical.lib for typical corner

Genus

• Industry standard synthesis suite.

• 2019 version of the traditional Cadence

Encounter RTL Compiler (RC).

• Logic as well as physical synthesis.

• Genus has a Legacy UI to directly run old

commands from RC.
– Not permitted for Lab 2. You must use updated Genus

commands.

Tool Setup & Documentation

• Use same setup files:
/w/class.1/ee/ee201o/ee201ota/csh_ee201a_setup

• Launch Genus with GUI (if display variable set)
$ genus -gui

• Launch Genus without GUI using Tcl (Tool Command

Language) script of input commands
$ genus < synth.tcl

• Genus Documentation
$ acroread <path>.pdf

/w/apps3/Cadence/GENUS191/doc/{genus_comref,

genus_attref, genus_user_legacy}

Example: $ acroread

/w/apps3/Cadence/GENUS191/doc/genus_comref/genus_com

ref.pdf

– Use Legacy User Manual only as a reference methodology guide.

Genus Logic Synthesis (1) - Example

set_db information_level 9 # Debug verbosity from 0 to 9

set_db hdl_error_on_blackbox true # Generate error when cannot map a block (a cell in

the library is missing)

set_db init_hdl_search_path {./} # Path to Verilog design files

read_hdl -v2001 verilog_file # Read Verilog design files

set_db init_lib_search_path {./} # Path to .lib (Liberty, not library suffix)

timing library

set_db library liberty_filename.lib # Set filename of the Liberty file for our

Nangate library

elaborate name_of_top_level_module # Initialize design from Verilog file (.v)

Apply design constraints for logic synthesis

Define clock with 1000ps period, no external timing slack, clock transition time

(slew rate) of 100ps

set clock [define_clock -period 1000 -name ${clkpin} [clock_ports]]

set_input_delay -clock ${clkpin} 0 [vfind /designs/${DESIGN}/ports -port *]

set_output_delay -clock ${clkpin} 0 [vfind /designs/${DESIGN}/ports -port *]

dc::set_clock_transition .1 ${clkpin}

check_design –unresolved # Check for unresolved refs & empty modules

Genus Logic Synthesis (2)
Perform logic synthesis: technology mapping + logic optimization

syn_generic

syn_map

syn_opt

List possible timing problems

report_timing -lint

Output some useful results of synthesis

report_timing > output/synth_report_timing.txt

report_gates > output/synth_report_gates.txt

report_power > output/synth_report_power.txt

Write the synthesized netlist as Verilog HDL

write_hdl > output/s15850_synth.v

Write design constraints to SDC file

write_sdc > output/s15850.sdc

Genus Set Attribute Syntax

• Change of syntax for setting attribute values:

RTL Compiler Genus
set_attribute set_db

• Genus: All kinds of object attributes grouped under

same command

– Root attributes:
set_db attribute_name value

– Design attributes:
set_db design:/$DESIGN .attribute_name value

– And so on for other object types

Getting Started With Lab 2 (1)

• Cycle time (T) cannot be smaller

than longest path delay (Tmax)

• Longest (critical) path delay is a

function of:

– Total gate, wire delays

• Slack = T - Tmax

Source: EE201A Lecture Slides

Getting Started With Lab 2 (2)

• Run skeleton script: $ genus < lab2_skeleton.tcl

• Change clock period in script
set clock [define_clock -period 651 -name clk [clock_ports]]

• Check slacks
genus:/>report_timing

– Slack: -1ps (delay of critical path is 652ps)

Getting Started With Lab 2 (3)

• Check power
genus:/> report_power

• Improve your design

– Read user and command reference manuals

– What Genus commands do you think could improve your delay,

area, and/or power?

– Add Genus commands into the “right” positions in script

– Experiment with ordering of commands during synthesis

Lab 2 Goals

• Work with Cadence Genus

– to understand synthesis flow and familiarize

yourself with a useful tool in industry

– manipulate CAD tool to generate a better design

from the same RTL

