

Tutorial on Cadence Genus Synthesis Solution

EE 201A – VLSI Design Automation – Winter 2024 UCLA Electrical Engineering

> Instructor: Prof. Puneet Gupta TA: George Karfakis

Based on slides from: Mark Gottscho/Vishesh Dokani

Logic Synthesis

- *RTL*: *Register-Transfer-Level* description of logic design (e.g., c = a + b)
 - Allows both *Behavioral* (add two numbers) and *structural* (connect module A to module B) design styles
 - Focus on higher-level functionality, e.g. sequential logic, pipeline stages, maybe even micro-architectural design
 - Verilog/VHDL are industry standard hardware description languages (HDL) used for RTL
- Logic synthesis: Automatically reduce RTL to gate-level logic (e.g., AND, NOT, wires, etc.) with help of a logic library
 - Still represented in Verilog, but lose intuition of higher abstraction. Purely structural design style
 - In fact, you can write your own gate-level logic implementation! Try it ... ;)
 - ... and you will rapidly appreciate the power of logic synthesis!
 - RTL s1494.v
 gate-level s1494_synth.v
- Software analogy: compile C to assembly language

RTL vs. Gate-Level Example in Verilog

• RTL:

always @(posedge clock)
if(add1 && add2) r <= r+3;
else if(add2) r <= r+2;
else if(add1) r <= r+1;</pre>

• Logic gates:

Nangate* Open Cell Library

*not NANDgate!
© www.nangate.com

- Commonly used set of *standard cells* that are treated as primitives in the HDL
 - Needed for logic synthesis as well as physical design
- Includes logic representation
 - AND gate example: ZN = (A1 & A2);
- Includes physical design information
 - Cell timing
 - Capacitance, Delay, Transition time, etc.
 - Cell power
 - Leakage power, Capacitance, etc.
 - Cell area
- Different libraries for different design corners
 - NangateOpenCellLibrary_typical.lib for typical corner

Genus

- Industry standard synthesis suite.
- 2019 version of the traditional Cadence Encounter RTL Compiler (RC).
- Logic as well as physical synthesis.
- Genus has a Legacy UI to directly run old commands from RC.
 - <u>Not permitted</u> for Lab 2. You must use updated Genus commands.

Tool Setup & Documentation

• Use same setup files:

/w/class.1/ee/ee2010/ee201ota/csh_ee201a_setup

- Launch Genus with GUI (if display variable set)
 - \$ genus -gui
- Launch Genus without GUI using Tcl (Tool Command Language) script of input commands

\$ genus < synth.tcl</pre>

Genus Documentation

\$ acroread <path>.pdf

/w/apps3/Cadence/GENUS191/doc/{genus_comref,

```
genus_attref, genus_user_legacy}
```

Example: \$ acroread

/w/apps3/Cadence/GENUS191/doc/genus_comref/genus_com ref.pdf

- Use Legacy User Manual only as a reference methodology guide.

Genus Logic Synthesis (1) - Example

set db information level 9 # Debug verbosity from 0 to 9

- set_db hdl_error_on_blackbox true # Generate error when cannot map a block (a cell in the library is missing)
- set db init hdl search path {./} # Path to Verilog design files
- read hdl -v2001 verilog file # Read Verilog design files
- set_db init_lib_search_path {./} # Path to .lib (Liberty, not library suffix)
 timing library
- set_db library liberty_filename.lib # Set filename of the Liberty file for our Nangate library

elaborate name_of_top_level_module # Initialize design from Verilog file (.v)

```
# Apply design constraints for logic synthesis
# Define clock with 1000ps period, no external timing slack, clock transition time
  (slew rate) of 100ps
set clock [define_clock -period 1000 -name ${clkpin} [clock_ports]]
set_input_delay -clock ${clkpin} 0 [vfind /designs/${DESIGN}/ports -port *]
set_output_delay -clock ${clkpin} 0 [vfind /designs/${DESIGN}/ports -port *]
dc::set_clock_transition .1 ${clkpin}
```

check design -unresolved # Check for unresolved refs & empty modules

Genus Logic Synthesis (2)

Perform logic synthesis: technology mapping + logic optimization syn_generic syn_map syn opt

```
# List possible timing problems
report timing -lint
```

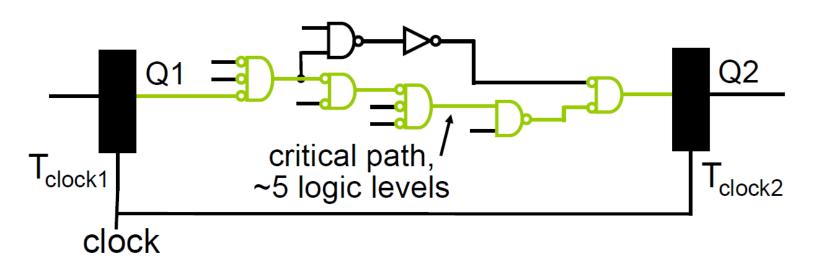
Output some useful results of synthesis
report_timing > output/synth_report_timing.txt
report_gates > output/synth_report_gates.txt
report_power > output/synth_report_power.txt

```
# Write the synthesized netlist as Verilog HDL
write_hdl > output/s15850_synth.v
```

Write design constraints to SDC file
write_sdc > output/s15850.sdc

Genus Set Attribute Syntax

- Change of syntax for setting attribute values: <u>RTL Compiler</u> set attribute set db
- Genus: All kinds of object attributes grouped under same command
 - Root attributes:
 - set_db attribute_name value
 - Design attributes:
 - set_db design:/\$DESIGN .attribute_name value
 - And so on for other object types



Getting Started With Lab 2 (1)

- Cycle time (T) cannot be smaller than longest path delay (Tmax)
- Longest (critical) path delay is a function of:
 - Total gate, wire delays
- Slack = T T_{max}

Getting Started With Lab 2 (2)

- Run skeleton script: \$ genus < lab2_skeleton.tcl
- Change clock period in script

set clock [define_clock -period 651 -name clk [clock_ports]]

Check slacks

genus:/>report_timing

910107700	10/_//±	,	14.J	5,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
g15025/A1					+19	468			
g15025/ZN	NAND2 X1	2	3.6	16	+24	493 F			
g15007/A1	—				+14	507			
g15007/ZN	NOR3 X1	1	1.9	28	+38	544 R			
g14971/A	—				+12	556			
g14971/ZN	A0I211 X1	1	1.8	20	+19	575 F			
g14960/A1	—				+11	587			
g14960/ZN	NAND4 X1	1	1.4	14	+22	608 R			
v10 reg/D	DFFR X1				+9	617			
v10 reg/CK	setup			100	+35	652 R			
(clock clkname)	capture					651 R			
Timing slack : - 1ps (TIMING VIOLATION)									
Start-point : v10 reg/CK									
	0 reg/D								

- Slack: -1ps (delay of critical path is 652ps)

Getting Started With Lab 2 (3)

Check power

genus:/> report power

	Instance	Cells	Leakage Power(nW)	Dynamic Power(nW)	Total Power(nW)
s	1494_bench	333	9102.164	368710.751	377812.915

• Improve your design

- Read user and command reference manuals
- What Genus commands do you think could improve your delay, area, and/or power?
- Add Genus commands into the "right" positions in script
- Experiment with ordering of commands during synthesis

Lab 2 Goals

- Work with Cadence Genus
 - to understand synthesis flow and familiarize yourself with a useful tool in industry
 - manipulate CAD tool to generate a better design from the same RTL