
Puneet Gupta (puneet@ee.ucla.edu)

Lecture 13 –Global Routing -2

Puneet Gupta (puneet@ee.ucla.edu)

Logistics

• Some of you do not have not found a project
partner.
– Please use Piazza to check if anyone is still available
– There are odd number of students in class  at least

one student will have to do it solo
– Doing it solo is not a bad idea (you get extra credit)

• Office Hour this week postponed to Friday,
4pm (sorry, doctor appointment)

Puneet Gupta (puneet@ee.ucla.edu) 3

• Finds a shortest path between two specific nodes in the
routing graph

• Input
– graph G(V,E) with non-negative edge weights W,
– source (starting) node s, and
– target (ending) node t

• Maintains three groups of nodes
– Group 1 – contains the nodes that have not yet been visited
– Group 2 – contains the nodes that have been visited but for which

the shortest-path cost from the starting node has not yet been found
– Group 3 – contains the nodes that have been visited and for which

the shortest path cost from the starting node has been found

• Once t is in Group 3, the algorithm finds the shortest path
by backtracing

Finding Shortest Paths with
Dijkstra’s Algorithm

Puneet Gupta (puneet@ee.ucla.edu) 4

1 4 7

2 5 8

3 6 9

s

t

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Find the shortest path from source
s to target t where the path cost
∑w1 + ∑w2 is minimal

Finding Shortest Paths with
Dijkstra’s Algorithm

Example

Puneet Gupta (puneet@ee.ucla.edu) 5

1 4 7

2 5 8

3 6 9

s

t

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)

Current node: 1

Puneet Gupta (puneet@ee.ucla.edu) 6

[1]
[2] 8,6
[4] 1,4

[4] 1,4

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Group 2 Group 31 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Current node: 1
Neighboring nodes: 2, 4
Minimum cost in group 2: node 4

s

t

Puneet Gupta (puneet@ee.ucla.edu) 7

1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6

Current node: 4
Neighboring nodes: 1, 5, 7
Minimum cost in group 2: node 2

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Puneet Gupta (puneet@ee.ucla.edu) 8

1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6
[3] 9,10
[5] 10,12

[3] 9,10

Current node: 2
Neighboring nodes: 1, 3, 5
Minimum cost in group 2: node 3

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Puneet Gupta (puneet@ee.ucla.edu) 9

1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6
[3] 9,10
[5] 10,12

[3] 9,10[6] 18,18

[5] 10,11Current node: 3
Neighboring nodes: 2, 6
Minimum cost in group 2: node 5

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Puneet Gupta (puneet@ee.ucla.edu) 10

1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6
[3] 9,10
[5] 10,12

[3] 9,10[6] 18,18

[5] 10,11
[6] 12,19
[8] 12,19

[7] 9,12

Current node: 5
Neighboring nodes: 2, 4, 6, 8
Minimum cost in group 2: node 7

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Puneet Gupta (puneet@ee.ucla.edu) 11

1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)
(2) 8,6
(4) 1,4

(4) 1,4
(5) 10,11
(7) 9,12

(2) 8,6
(3) 9,10
(5) 10,12

(3) 9,10(6) 18,18

(5) 10,11
(6) 12,19
(8) 12,19

(7) 9,12(8) 12,14

(8) 12,14

Current node: 7
Neighboring nodes: 4, 8
Minimum cost in group 2: node 8

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Puneet Gupta (puneet@ee.ucla.edu) 12

1 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)
(2) 8,6
(4) 1,4

(4) 1,4
(5) 10,11
(7) 9,12

(2) 8,6
(3) 9,10
(5) 10,12

(3) 9,10(6) 18,18

(5) 10,11
(6) 12,19

(8) 12,19

(7) 9,12(8) 12,14

(8) 12,14

Retrace from t to s

s

t

4

Optimal path 1-4-7-8 from s to t
with accumulated cost (12,14)

Puneet Gupta (puneet@ee.ucla.edu)

Maze Routing

4 3 2 3 4 5 6 7 8 9 10 11

3 2 1 2 3 4 5 6 7 8 9 10

2 1 A 1 5 6 7 8
3 2 1 2 6 7 8 9 10 11 12

4 3 2 3 12 13

5 4 3 4 14 B 13 14

6 5 13 14 14
7 6 7 11 12 13 14
8 7 8 9 10 11 12 13 14

9 8 9 10 11 12 13 14

 Point to point routing of nets

 Route from source to sink

 Basic idea = wave propagation (Lee, 1961)
 Breadth-first search + back-tracing after finding shortest path
 Guarantees to find the shortest path

 Objective = route all nets according to some cost function
that minimizes congestion, route length, coupling, etc.

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneet@ee.ucla.edu)
14

Maze Routing

Slow: for each net, we have to search M × N
grid.

Improvements
 Simple modification (Akers, 1967)

All one wants is previous label to
be different from next label
use 1122 labeling
 reduce the memory requirement
per vertex (1, 2, empty, blocked 
2 bits instead of log(m+n)
 also need to search M × N grid

 Figure courtesy Hai Zhou@Northwestern

Puneet Gupta (puneet@ee.ucla.edu)
15

Soukup’s Algorithm

Iterative algorithm (Soukup, 1978)
 explore in the direction toward the
target

Draw a line toward target in go in
that direction. (DFS)
If stuck do Lee-style BFS till you
find a grid in target direction.
 draw a line toward target again

 First use DFS, when get to an
obstacle, use BFS to get around
No guarantee to find the shortest path
 speedup Lee-maze by 10x to 50x

Puneet Gupta (puneet@ee.ucla.edu)

Directed Search
• Add <distance to sink> to cost function  directed search

– Similar to Soukup
– Allows maze router to explore points around direct source-sink path first
– A* search (Hart, Nilsson and Raphael, 1968) = Best-First Search: expand from

node w/min f = g +h; g = current cost, h = LB on future cost
• If h is always a lower bound  optimal (will always find min-cost path)

– Bidirectional A* search: nodes are expanded from both the source
and target until the two expansion regions intersect

Puneet Gupta (puneet@ee.ucla.edu)

In general, maze routing is not well-suited to multi-terminal
nets

Several attempts made to extend to multi-terminal nets

 Connect one terminal at a time
 Use the entire connected subtrees as sources or targets

during expansion
 Ripup/Reroute to improve solution quality (remove a

segment and re-connect)

4

A
D

C

B

E

A
D

C

B

E

1
2

3

• Results are sub-optimal
• Inherit time and memory cost of maze algorithms

Connecting Multi-Terminal Nets

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneet@ee.ucla.edu)

5 min break

Puneet Gupta (puneet@ee.ucla.edu) 19

Full-Netlist Routing
• Global routers must properly match nets with routing

resources, without oversubscribing resources in any
part of the chip

• Signal nets are either routed
– simultaneously, e.g., by integer linear programming, or
– sequentially, e.g., one net at a time

• When certain nets cause resource contention or
overflow for routing edges, sequential routing requires
multiple iterations: rip-up and reroute

Puneet Gupta (puneet@ee.ucla.edu) 20

Routing by Integer Linear
Programming

• A linear program (LP) consists
– of a set of linear constraints and
– an optional linear objective function

• Objective function is maximized or minimized
• Integer linear program (ILP): linear program

where every variable can only assume integer values
– Typically takes much longer to solve
– In many cases, variables are only allowed values 0 and 1

• Several ways to formulate the global routing problem
as an ILP, one of which is presented next

Puneet Gupta (puneet@ee.ucla.edu) 21

Routing by Integer Linear
Programming

• Three inputs
– W × H routing grid G,
– Routing edge capacities, and
– Netlist

• Two sets of variables
– k Boolean variables xnet1, xnet2, … , xnetk, each of which serves as an indicator

for one of k specific paths or route options, for each net net in Netlist
– k real variables wnet1, wnet2, … , wnetk, each of which represents a net weight

for a specific route option for net in Netlist

• Two types of constraints
– Each net must select a single route (mutual exclusion)
– Number of routes assigned to each edge (total usage) cannot exceed its

capacity

Puneet Gupta (puneet@ee.ucla.edu) 22

Routing by Integer Linear
Programming

• Inputs
– W,H: width W and height H of routing grid G
– G(i,j): grid cell at location (i,j) in routing grid G
– σ(G(i,j)~G(i + 1,j)): capacity of horizontal edge G(i,j) ~ G(i + 1,j)
– σ(G(i,j)~G(i,j + 1)): capacity of vertical edge G(i,j) ~ G(i,j + 1)
– Netlist: netlist

• Variables
– xnet1, ... , xnetk: k Boolean path variables for each net net in Netlist
– wnet1, ... , wnetk: k net weights, one for each path of net net in Netlist

• Maximize

• Subject to
– Variable ranges
– Net constraints
– Capacity constraints

∑
∈

⋅++⋅
Netlistnet

netnetnetnet kk
xwxw 

11

Puneet Gupta (puneet@ee.ucla.edu) 23

Routing by Integer Linear
Programming – Example

• Given
– Nets A, B, C
– W = 5 × H = 4 routing grid G
– σ(e) = 1 for all e  G
– L-shapes have weight 1.00 and Z-shapes have weight 0.99
– The lower-left corner is (0,0).

• Task
– Write the ILP to route the nets in the graph below

A

A B
BC

C

Puneet Gupta (puneet@ee.ucla.edu) 24

Routing by Integer Linear
Programming – Example

• Solution
– For net A, the possible routes are two L-shapes (A1,A2) and two Z-shapes (A3,A4)

– For net B, the possible routes are two L-shapes (B1,B2) and one Z-shape (B3)

– For net C, the possible routes are two L-shapes (C1,C2) and two Z-shapes (C3,C4)

Net Constraints:
xA1 + xA2 + xA3 + xA4 ≤ 1
Variable Constraints:
0 ≤ xA1 ≤ 1, 0 ≤ xA2 ≤ 1,
0 ≤ xA3 ≤ 1, 0 ≤ xA4 ≤ 1

A

A
A2

A1 A

A
A4

A3

Net Constraints:
xB1 + xB2 + xB3 ≤ 1
Variable Constraints:
0 ≤ xB1 ≤ 1, 0 ≤ xB2 ≤ 1,
0 ≤ xB3 ≤ 1

B
B

B1

B2

B3 B
B

Net Constraints:
xC1 + xC2+ xC3 + xC4 ≤ 1
Variable Constraints:
0 ≤ xC1 ≤ 1, 0 ≤ xC2 ≤ 1,
0 ≤ xC3 ≤ 1, 0 ≤ xC4 ≤ 1

C

C

C

CC2

C1

C3

C4

Puneet Gupta (puneet@ee.ucla.edu) 25

Routing by ILP– Example
Horizontal Edge Capacity Constraints:
 G(0,0) ~ G(1,0): xC1 + xC3 ≤ σ(G(0,0) ~ G(1,0)) = 1
 G(1,0) ~ G(2,0): xC1 ≤ σ(G(1,0) ~ G(2,0)) = 1
 G(2,0) ~ G(3,0): xB1 + xB3 ≤ σ(G(2,0) ~ G(3,0)) = 1
 G(3,0) ~ G(4,0): xB1 ≤ σ(G(3,0) ~ G(4,0)) = 1
 G(0,1) ~ G(1,1): xA2 + xC4 ≤ σ(G(0,1) ~ G(1,1)) = 1
 G(1,1) ~ G(2,1): xA2 + xA3 + xC4 ≤ σ(G(1,1) ~ G(2,1)) = 1
 G(2,1) ~ G(3,1): xB2 ≤ σ(G(2,1) ~ G(3,1)) = 1
 G(3,1) ~ G(4,1): xB2 + xB3 ≤ σ(G(3,1) ~ G(4,1)) = 1
 G(0,2) ~ G(1,2): xA4 + xC2 ≤ σ(G(0,2) ~ G(1,2)) = 1
 G(1,2) ~ G(2,2): xA4 + xC2 + xC3 ≤ σ(G(1,2) ~ G(2,2)) = 1
 G(0,3) ~ G(1,3): xA1 + xA3 ≤ σ(G(0,3) ~ G(1,3)) = 1
 G(1,3) ~ G(2,3): xA1 ≤ σ(G(1,3) ~ G(2,3)) = 1

Vertical Edge Capacity Constraints:
 G(0,0) ~ G(0,1): xC2 + xC4 ≤ σ(G(0,0) ~ G(0,1)) = 1
 G(1,0) ~ G(1,1): xC3 ≤ σ(G(1,0) ~ G(1,1)) = 1
 G(2,0) ~ G(2,1): xB2 + xC1 ≤ σ(G(2,0) ~ G(2,1)) = 1
 G(3,0) ~ G(3,1): xB3 ≤ σ(G(3,0) ~ G(3,1)) = 1
 G(4,0) ~ G(4,1): xB1 ≤ σ(G(4,0) ~ G(4,1)) = 1
 G(0,1) ~ G(0,2): xA2 + xC2 ≤ σ(G(0,1) ~ G(0,2)) = 1
 G(1,1) ~ G(1,2): xA3 + xC3 ≤ σ(G(1,1) ~ G(1,2)) = 1
 G(2,1) ~ G(2,2): xA1 + xA4 + xC1 + xC4 ≤ σ(G(2,1) ~ G(2,2)) = 1
 G(0,2) ~ G(0,3): xA2 + xA4 ≤ σ(G(0,2) ~ G(0,3)) = 1
 G(1,2) ~ G(1,3): xA3 ≤ σ(G(1,2) ~ G(1,3)) = 1
 G(2,2) ~ G(2,3): xA1 ≤ σ(G(2,2) ~ G(2,3)) = 1

Puneet Gupta (puneet@ee.ucla.edu) 26

Rip-Up and Reroute (RRR)
• Rip-up and reroute (RRR) framework: focuses on hard-to-route

nets
• Idea: allow temporary violations, so that all nets are routed, but

then iteratively remove some nets (rip-up), and route them
differently (reroute)

D

B
D’

A’

B’

C’
C

A

D

B

C

A
D’

A’

B’

C’

Routing without
allowing violations

WL = 21

D

B

C

A
D’

A’

B’

C’

Routing with allowing
violations and RRR

WL = 19

Puneet Gupta (puneet@ee.ucla.edu) 27

• General flow for modern global routers, where
each router uses a unique set of optimizations:

Global Routing Instance

Net Decomposition Initial Routing

Layer Assignment

Final Improvements

no

yes

Rip-up and Reroute

Violations?

(optional)

Modern Global Routing

Puneet Gupta (puneet@ee.ucla.edu) 28

Modern Global Routing
• Initial routes are constructed quickly by pattern routing and

Steiner tree construction
• For each net, considers only a small number of shapes

(L, Z, U, T, E)
• Very fast, but misses many opportunities

• The main part of the router is based on a variant of rip-up
reroute called Negotiated-Congestion Routing (NCR)
• NCR maintains "history" in terms of which regions

attracted too many nets
• NCR increases routing cost according to the historical

popularity of the regions
− The nets with alternative routes are forced to take those routes
− The nets that do not have good alternatives remain unchanged

Puneet Gupta (puneet@ee.ucla.edu)

Some Points about EDA Tools

Puneet Gupta (puneet@ee.ucla.edu)

Q: Do tools give different answers when
you run them multiple times?

A: Maybe, but why would that be bad?

Puneet Gupta (puneet@ee.ucla.edu)

Noise in Production Design Flow

• Two major sources of noise
• Miscorrelation in parasitics extractor and timer
• Suboptimality of heuristic optimization engines

• Most design optimization problems are NP-hard  Heuristic
approaches have been used

• Heuristics lead to “NOISE” that creates variability in solution quality

• Exploting noise in design flow
• Use idle machines: we can choose

• best solution among N different solutions
• Example: Best-of-k method

-0.600

-0.580

-0.560

-0.540

-0.520

-0.500

-0.480

-0.460

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

W
N

S
fr

om
 1

00

tr
ia

ls

k

Worst Best Average

Puneet Gupta (puneet@ee.ucla.edu)

Miscorrelation: Implementation vs. Signoff

• Experiment setup
• Testcases:

• aes_cipher_top
• jpeg_encoder

• Tools
• SOCE / Astro

• Results
• Most cases, P&R tools underestimate

timing slack; increasing TAT needed
to fix violations at signoff

• There is no clear trend – i.e., not clear
what factors cause miscorrelation

• Conventional approaches
• RC derating in implementation tools

to have pessimistic delay

• Possible sources of miscorrelation
– RC lookup table, distribute RC

model, delay model, coupling
calculation, reconvergence path
analysis, etc.

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

-0.350 -0.250 -0.150 -0.050 0.050

Si
gn

of
f (P

rim
eT

im
e)

Implementation (SOCE , Astro)

Astro vs. PrimeTime

SOCE vs. PrimeTime

~200ps underestimation

Worst negative slack comparison
From 29 testcases

Puneet Gupta (puneet@ee.ucla.edu)

Inherent Noise: Ignorable Perturbation
vs. Results

• Slight changes in design constraints can make significant
difference in final timing

• Possible knobs to perturb in design constraints
• Clock cycle time
• Clock uncertainty
• IO delay constrants
• RC values

• Loose timing constraints do not always improve timing
• 0.1ps change in constraint  > 50ps change in signoff timing

• Noise is really random!  Difficult to predict

Puneet Gupta (puneet@ee.ucla.edu)

Inherent Noise: Example Results

Design Criticality Clock
(ns)

“S” “A” “B”
With original Clock With original Clock With original Clock

Setup Setup Setup
WNS

(SOCE)
(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

WNS
(Astro)

(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

WNS(BF)
(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

AES

Tight clock
(original
2.2ns)

2.1998 -0.407 -0.430 -81.124 -0.241 -0.487 -94.822 -0.077 -0.391 -60.156
2.1999 -0.392 -0.420 -73.533 -0.218 -0.512 -89.316 -0.067 -0.397 -58.728
2.2000 -0.399 -0.457 -85.641 -0.255 -0.569 -100.956 -0.081 -0.331 -59.985
2.2001 -0.436 -0.439 -82.053 -0.280 -0.535 -110.341 -0.074 -0.442 -61.048
2.2002 -0.406 -0.441 -82.576 -0.246 -0.490 -92.196 -0.067 -0.384 -51.980

Loose clock
(original
3.0ns)

2.9998 -0.026 -0.119 -1.965 0.040 -0.280 -35.482 0.000 -0.342 -44.778
2.9999 -0.091 -0.095 -2.137 0.064 -0.325 -34.699 0.001 -0.469 -46.154
3.0000 -0.046 -0.096 -3.499 0.049 -0.346 -36.565 -0.001 -0.448 -48.369
3.0001 -0.049 -0.112 -1.972 0.083 -0.239 -23.040 -0.008 -0.373 -44.683
3.0002 -0.061 -0.078 -1.718 0.057 -0.287 -31.985 0.000 -0.421 -48.042

JPEG

Tight clock
(original
1.3ns)

1.2998 -0.294 -0.315 -625.434 -0.265 -0.352 -744.637 -0.228 -0.324 -501.295
1.2999 -0.263 -0.281 -566.317 -0.240 -0.418 -701.361 -0.166 -0.266 -410.594
1.3000 -0.257 -0.258 -537.580 -0.256 -0.395 -733.841 -0.244 -0.338 -567.228
1.3001 -0.249 -0.303 -561.013 -0.239 -0.321 -719.196 -0.202 -0.304 -475.253
1.3002 -0.298 -0.514 -757.272 -0.229 -0.346 -731.566 -0.197 -0.277 -471.392

Loose clock
(original
2.0ns)

1.9998 -0.005 -0.011 -0.011 0.101 -0.140 -0.520 0.000 -0.216 -11.407
1.9999 0.008 -0.068 -0.068 0.101 -0.140 -0.520 0.000 -0.167 -12.021
2.0000 -0.007 -0.093 -0.137 0.101 -0.131 -1.240 -0.002 -0.196 -15.189
2.0001 -0.001 -0.010 -0.010 0.096 -0.098 -0.449 0.001 -0.181 -16.782
2.0002 0.008 -0.004 -0.006 0.099 -0.066 -0.279 -0.006 -0.178 -12.220

Puneet Gupta (puneet@ee.ucla.edu)

Q: Why do chips pass timing signoff in
design, but then fail to yield in the fab?

A: Signoff criteria are different from
manufacturing criteria.

Puneet Gupta (puneet@ee.ucla.edu)

Problem: Path Index Migration/Miscorrelation

0
50

100
150
200

250
300
350

400
450
500

550
600
650

700
750
800

850
900
950

1000
1050

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

Plan of Record (signoff STA)

Si
lic

on
 (F

M
A

X
te

st
s)

Top 500-Ranked Critical Paths At Signoff, vs. Rank In Silicon

Puneet Gupta (puneet@ee.ucla.edu)

No Two Chips are
Identical

• Manufacturing variation is the reality.
• “Corners” (FF, SS, typical) try to approximate them

• Do NOT expect models to be “accurate”
• Manufacturing process is always a random variable

with a distribution
• Corollary: wasting time on 1ps improvement is

useless
• Corollary: wasting time on 1nm dimension change

is useless and often not permitted by design rules

Puneet Gupta (puneet@ee.ucla.edu)

Q: Can I do better than the tool?

A: Very unlikely.

Puneet Gupta (puneet@ee.ucla.edu)

EDA tools are (usually) well optimized

• Experience
• You: 0-10 designs
• EDA tool: 1000s of designs over years/decades

• Correctness
• You: prone to making mistakes
• EDA tool: any bugs ironed out over experience

• Quality of results
• You: may be can do a better job with 100 gate designs
• EDA tool: Optimized algorithms to deal with millions of gates

• Cost and Effort
• You: a graduate engineer paid costing a company $200K+/year
• EDA tool: hardware cost: $10K/year for 32 processor server which can churn million gate

SP&R overnight + tool cost ($10K-$500K/year amortized over many designers)

• Weird, strange constraints or objectives
• This is where you may have an edge. Tools are optimized to handle the common case and

some not so common cases (through a large number of visible and hidden switches)

Puneet Gupta (puneet@ee.ucla.edu)

Q: Can I get away with no
“programming” being a designer?

A: Not really, at least if you want to be
an effective digital designer.

Puneet Gupta (puneet@ee.ucla.edu)

Managing Complex Designs requires
Methodologies  Scripting

• You may not need to write complex C++ code but scriptware is very common
• Timers, SP&R, most EDA tools: TCL is the defacto standard scripting language.

• Industry-strength tool flows often have 1000s of lines of TCL scripts

• Running PV (e.g., Calibre): its own SVRF scripting language
• Managing design databases (OpenAccess, Milkyway, etc) using TCL, Python,

SKILL,….
• Parsing reports, automating tool flows, managing files: Shell scripts, Perl, Python,

TCL…
• Opening tool GUIs is more of an exception than norm

• Its preferred to launch noGUI scripts and wait for runs to complete
• May be use the GUI or the tool shell to debug

• Unix/Linux is the near-universal standard (Windows/MAC support is
minimal): Learn how to use Linux and Linux shell utilities effectively!

• Jobs are launched often on large server farms  learn how to use compute
cluster tools (e.g., LSF)

Puneet Gupta (puneet@ee.ucla.edu)

Q: Can I just ask somebody if I get stuck
using a tool?

A: Not always, learn to debug yourself!

Puneet Gupta (puneet@ee.ucla.edu)

Debugging yourself

• “Big” companies may have internal tool support and external
application engineering support which may be sufficient
• But no one appreciates “trivial” questions

• “Small” companies, universities get little tool support
• Universities get near zero

• Debugging yourself
• Google!
• Tools have extensive documentation

• User guides, reference manuals, man/info pages, application notes

• Message boards on EDA company websites
• Resist the urge to post on Piazza (or CAD support team) the first

instant you see an error. Most tool errors are informative which help
you debug.

Puneet Gupta (puneet@ee.ucla.edu)

Q: How do I search for prior art ?

A: Google Scholar

Puneet Gupta (puneet@ee.ucla.edu)

Literature search 101

• Very few things are truly “new”
• Best (current) way of searching literature: Google

Scholar (searches books, papers, patents)
• Think of keywords on the topic and what might be

one hop away
• Remember “i” in Math is “j” in EE!
• My TSP is your scan chain ordering!

• Everything in Google Scholar has “cites” and “cited
by”. This allows you to systematically trace literature.

	Lecture 13 –Global Routing -2
	Logistics
	Finding Shortest Paths with Dijkstra’s Algorithm
		Finding Shortest Paths with Dijkstra’s Algorithm
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Maze Routing
	Maze Routing
	Soukup’s Algorithm
	Directed Search
	Connecting Multi-Terminal Nets
	5 min break
	Full-Netlist Routing
	Routing by Integer Linear Programming
	Routing by Integer Linear Programming
	Routing by Integer Linear Programming
	Routing by Integer Linear Programming – Example
	Routing by Integer Linear Programming – Example
	Routing by ILP– Example
	Rip-Up and Reroute (RRR)
	Modern Global Routing
	Modern Global Routing
	Some Points about EDA Tools
	Slide Number 30
	Noise in Production Design Flow
	Miscorrelation: Implementation vs. Signoff
	Inherent Noise: Ignorable Perturbation vs. Results
	Inherent Noise: Example Results
	Slide Number 35
	Problem: Path Index Migration/Miscorrelation
	No Two Chips are Identical
	Slide Number 38
	EDA tools are (usually) well optimized
	Slide Number 40
	Managing Complex Designs requires Methodologies  Scripting
	Slide Number 42
	Debugging yourself
	Slide Number 44
	Literature search 101

