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Logistics

• Some of you do not have not found a project 
partner.
– Please use Piazza to check if anyone is still available
– There are odd number of students in class  at least 

one student will have to do it solo
– Doing it solo is not a bad idea (you get extra credit)

• Office Hour this week postponed to Friday, 
4pm (sorry, doctor appointment)
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• Finds a shortest path between two specific nodes in the 
routing graph 

• Input 
– graph G(V,E) with non-negative edge weights W, 
– source (starting) node s, and 
– target (ending) node t

• Maintains three groups of nodes 
– Group 1 – contains the nodes that have not yet been visited 
– Group 2 – contains the nodes that have been visited but for which 

the shortest-path cost from the starting node has not yet been found
– Group 3 – contains the nodes that have been visited and for which 

the shortest path cost from the starting node has been found

• Once t is in Group 3, the algorithm finds the shortest path 
by backtracing

Finding Shortest Paths with 
Dijkstra’s Algorithm
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1 4 7

2 5 8

3 6 9

s

t

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Find the shortest path from source 
s to target t  where the path cost
∑w1 + ∑w2 is minimal

Finding Shortest Paths with 
Dijkstra’s Algorithm

Example 
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1 4 7

2 5 8

3 6 9

s

t

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)

Current node: 1
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[1]
[2] 8,6
[4] 1,4

[4] 1,4

parent of node [node name] ∑w1(s,node),∑w2(s,node)

Group 2 Group 31 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Current node: 1
Neighboring nodes: 2, 4
Minimum cost in group 2: node 4 

s

t



Puneet Gupta (puneet@ee.ucla.edu) 7

1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6

Current node: 4
Neighboring nodes: 1, 5, 7
Minimum cost in group 2: node 2 

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6
[3] 9,10
[5] 10,12

[3] 9,10

Current node: 2
Neighboring nodes: 1, 3, 5
Minimum cost in group 2: node 3 

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6
[3] 9,10
[5] 10,12

[3] 9,10[6] 18,18

[5] 10,11Current node: 3
Neighboring nodes: 2, 6
Minimum cost in group 2: node 5 

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

[1]
[2] 8,6
[4] 1,4

[4] 1,4
[5] 10,11
[7] 9,12

[2] 8,6
[3] 9,10
[5] 10,12

[3] 9,10[6] 18,18

[5] 10,11
[6] 12,19
[8] 12,19

[7] 9,12

Current node: 5
Neighboring nodes: 2, 4, 6, 8
Minimum cost in group 2: node 7 

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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1 4 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)
(2) 8,6
(4) 1,4

(4) 1,4
(5) 10,11
(7) 9,12

(2) 8,6
(3) 9,10
(5) 10,12

(3) 9,10(6) 18,18

(5) 10,11
(6) 12,19
(8) 12,19

(7) 9,12(8) 12,14

(8) 12,14

Current node: 7
Neighboring nodes: 4, 8
Minimum cost in group 2: node 8 

s

t

parent of node [node name] ∑w1(s,node),∑w2(s,node)
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1 7

2 5 8

3 6 9

1,4 8,8

2,6 2,8

9,8 3,3

8,6 9,7 3,2

1,4 2,8 4,5

Group 2 Group 3

(1)
(2) 8,6
(4) 1,4

(4) 1,4
(5) 10,11
(7) 9,12

(2) 8,6
(3) 9,10
(5) 10,12

(3) 9,10(6) 18,18

(5) 10,11
(6) 12,19

(8) 12,19

(7) 9,12(8) 12,14

(8) 12,14

Retrace from t to s

s

t

4

Optimal path 1-4-7-8 from s to t
with accumulated cost (12,14)
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Maze Routing

4     3      2      3      4      5     6    7     8       9     10   11

3     2      1      2     3      4      5    6     7     8       9     10

2      1     A     1             5      6     7     8        
3     2     1      2              6     7     8       9    10    11  12 

4     3     2      3                                                   12  13 

5     4     3      4             14                           B     13  14 

6     5                     13   14                                  14 
7     6     7              11   12    13  14
8    7      8      9     10    11   12    13  14

9    8      9     10    11   12    13  14

 Point to point routing of nets

 Route from source to sink

 Basic idea = wave propagation (Lee, 1961)
 Breadth-first search + back-tracing after finding shortest path
 Guarantees to find the shortest path

 Objective = route all nets according to some cost function 
that minimizes congestion, route length, coupling, etc.

Courtesy K. Keutzer et al. UCB
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Maze Routing 

Slow: for each net, we have to search M × N 
grid.

Improvements 
  Simple modification (Akers, 1967)

All one wants is previous label to 
be different from next label 
use 1122 labeling
 reduce the memory requirement 
per vertex (1, 2, empty, blocked  
2 bits instead of log(m+n)
 also need to search M × N grid

 Figure courtesy Hai Zhou@Northwestern



Puneet Gupta (puneet@ee.ucla.edu)
15

Soukup’s Algorithm

Iterative algorithm (Soukup, 1978)
 explore in the direction toward the 
target

Draw a line toward target in go in 
that direction. (DFS)
If stuck do Lee-style BFS till you 
find a grid in target direction.
 draw a line toward target again

 First use DFS, when get to an 
obstacle, use BFS to get around
No guarantee to find the shortest path
 speedup Lee-maze by 10x to 50x
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Directed Search
• Add <distance to sink> to cost function  directed search

– Similar to Soukup
– Allows maze router to explore points around direct source-sink path first
– A* search (Hart, Nilsson and Raphael, 1968) = Best-First Search:  expand from 

node w/min f = g +h;  g = current cost, h = LB on future cost
• If h is always a lower bound  optimal (will always find min-cost path)

– Bidirectional A* search: nodes are expanded from both the source 
and target until the two expansion regions intersect 
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In general, maze routing is not well-suited to multi-terminal 
nets

Several attempts made to extend to multi-terminal nets

 Connect one terminal at a time
 Use the entire connected subtrees as sources or targets 

during expansion
 Ripup/Reroute to improve solution quality (remove a 

segment and re-connect)

4

A
D

C

B

E

A
D

C

B

E

1
2

3

• Results are sub-optimal
• Inherit time and memory cost of maze algorithms

Connecting Multi-Terminal Nets

Courtesy K. Keutzer et al. UCB
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5 min break
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Full-Netlist Routing
• Global routers must properly match nets with routing 

resources, without oversubscribing resources in any 
part of the chip 

• Signal nets are either routed 
– simultaneously, e.g., by integer linear programming, or 
– sequentially, e.g., one net at a time 

• When certain nets cause resource contention or 
overflow for routing edges, sequential routing requires 
multiple iterations: rip-up and reroute 
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Routing by Integer Linear 
Programming

• A linear program (LP) consists 
– of a set of linear constraints and 
– an optional linear objective function

• Objective function is maximized or minimized
• Integer linear program (ILP): linear program 

where every variable can only assume integer values
– Typically takes much longer to solve
– In many cases, variables are only allowed values 0 and 1 

• Several ways to formulate the global routing problem 
as an ILP, one of which is presented next 
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Routing by Integer Linear 
Programming

• Three inputs 
– W × H routing grid G, 
– Routing edge capacities, and 
– Netlist

• Two sets of variables
– k Boolean variables xnet1, xnet2, … , xnetk, each of which serves as an indicator  

for one of k specific paths or route options, for each net net in Netlist
– k real variables wnet1, wnet2, … , wnetk, each of which represents a net weight 

for a specific route option for net in Netlist

• Two types of constraints
– Each net must select a single route (mutual exclusion)
– Number of routes assigned to each edge (total usage) cannot exceed its 

capacity  
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Routing by Integer Linear 
Programming

• Inputs
– W,H: width W and height H of routing grid G
– G(i,j): grid cell at location (i,j) in routing grid G
– σ(G(i,j)~G(i + 1,j)): capacity of horizontal edge G(i,j) ~ G(i + 1,j)
– σ(G(i,j)~G(i,j + 1)): capacity of vertical edge G(i,j) ~ G(i,j + 1)
– Netlist: netlist

• Variables
– xnet1, ... , xnetk: k Boolean path variables for each net net in Netlist
– wnet1, ... , wnetk: k net weights, one for each path of net net in Netlist

• Maximize

• Subject to
– Variable ranges
– Net constraints
– Capacity constraints

∑
∈

⋅++⋅
Netlistnet

netnetnetnet kk
xwxw 

11
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Routing by Integer Linear 
Programming – Example

• Given 
– Nets A, B, C
– W = 5 × H = 4 routing grid G
– σ(e) = 1 for all e  G
– L-shapes have weight 1.00 and Z-shapes have weight 0.99
– The lower-left corner is (0,0).

• Task 
– Write the ILP to route the nets in the graph below 

A

A B
BC

C
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Routing by Integer Linear 
Programming – Example

• Solution 
– For net A, the possible routes are two L-shapes (A1,A2) and two Z-shapes (A3,A4)

– For net B, the possible routes are two L-shapes (B1,B2) and one Z-shape (B3)

– For net C, the possible routes are two L-shapes (C1,C2) and two Z-shapes (C3,C4)

Net Constraints:
xA1 + xA2 + xA3 + xA4 ≤ 1
Variable Constraints:
0 ≤ xA1 ≤ 1, 0 ≤ xA2 ≤ 1,
0 ≤ xA3 ≤ 1, 0 ≤ xA4 ≤ 1 

A

A
A2

A1 A

A
A4

A3

Net Constraints:
xB1 + xB2 + xB3 ≤ 1
Variable Constraints:
0 ≤ xB1 ≤ 1, 0 ≤ xB2 ≤ 1,
0 ≤ xB3 ≤ 1 

B
B

B1

B2

B3 B
B

Net Constraints:
xC1 + xC2+ xC3 + xC4 ≤ 1
Variable Constraints:
0 ≤ xC1 ≤ 1, 0 ≤ xC2 ≤ 1,
0 ≤ xC3 ≤ 1, 0 ≤ xC4 ≤ 1 

C

C

C

CC2

C1

C3

C4
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Routing by ILP– Example
Horizontal Edge Capacity Constraints:
 G(0,0) ~ G(1,0): xC1 + xC3        ≤ σ(G(0,0) ~ G(1,0)) = 1
 G(1,0) ~ G(2,0): xC1        ≤ σ(G(1,0) ~ G(2,0)) = 1
 G(2,0) ~ G(3,0): xB1 + xB3        ≤ σ(G(2,0) ~ G(3,0)) = 1
 G(3,0) ~ G(4,0): xB1        ≤ σ(G(3,0) ~ G(4,0)) = 1
 G(0,1) ~ G(1,1): xA2 + xC4        ≤ σ(G(0,1) ~ G(1,1)) = 1
 G(1,1) ~ G(2,1): xA2 + xA3 + xC4   ≤ σ(G(1,1) ~ G(2,1)) = 1
 G(2,1) ~ G(3,1): xB2        ≤ σ(G(2,1) ~ G(3,1)) = 1
 G(3,1) ~ G(4,1): xB2 + xB3        ≤ σ(G(3,1) ~ G(4,1)) = 1 
 G(0,2) ~ G(1,2): xA4 + xC2        ≤ σ(G(0,2) ~ G(1,2)) = 1
 G(1,2) ~ G(2,2): xA4 + xC2 + xC3   ≤ σ(G(1,2) ~ G(2,2)) = 1
 G(0,3) ~ G(1,3): xA1 + xA3        ≤ σ(G(0,3) ~ G(1,3)) = 1
 G(1,3) ~ G(2,3): xA1        ≤ σ(G(1,3) ~ G(2,3)) = 1

Vertical Edge Capacity Constraints:
 G(0,0) ~ G(0,1): xC2 + xC4       ≤ σ(G(0,0) ~ G(0,1)) = 1
 G(1,0) ~ G(1,1): xC3       ≤ σ(G(1,0) ~ G(1,1)) = 1
 G(2,0) ~ G(2,1): xB2 + xC1       ≤ σ(G(2,0) ~ G(2,1)) = 1
 G(3,0) ~ G(3,1): xB3       ≤ σ(G(3,0) ~ G(3,1)) = 1
 G(4,0) ~ G(4,1): xB1                    ≤ σ(G(4,0) ~ G(4,1)) = 1
 G(0,1) ~ G(0,2): xA2 + xC2       ≤ σ(G(0,1) ~ G(0,2)) = 1
 G(1,1) ~ G(1,2): xA3 + xC3       ≤ σ(G(1,1) ~ G(1,2)) = 1
 G(2,1) ~ G(2,2): xA1 + xA4 + xC1 + xC4  ≤ σ(G(2,1) ~ G(2,2)) = 1
 G(0,2) ~ G(0,3): xA2 + xA4       ≤ σ(G(0,2) ~ G(0,3)) = 1
 G(1,2) ~ G(1,3): xA3                    ≤ σ(G(1,2) ~ G(1,3)) = 1
 G(2,2) ~ G(2,3): xA1       ≤ σ(G(2,2) ~ G(2,3)) = 1
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Rip-Up and Reroute (RRR)
• Rip-up and reroute (RRR) framework: focuses on hard-to-route 

nets 
• Idea: allow temporary violations, so that all nets are routed, but 

then iteratively remove some nets (rip-up), and route them 
differently (reroute) 

D

B
D’

A’

B’

C’
C

A

D

B

C

A
D’

A’

B’

C’

Routing without 
allowing violations

WL = 21

D

B

C

A
D’

A’

B’

C’

Routing with allowing 
violations and RRR

WL = 19
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• General flow for modern global routers, where 
each router uses a unique set of optimizations: 

Global Routing Instance

Net Decomposition Initial Routing

Layer Assignment

Final Improvements

no

yes

Rip-up and Reroute

Violations?

(optional)

Modern Global Routing
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Modern Global Routing  
• Initial routes are constructed quickly by pattern routing and 

Steiner tree construction 
• For each net, considers only a small number of shapes 

(L, Z, U, T, E)
• Very fast, but misses many opportunities

• The main part of the router is based on a variant of rip-up 
reroute called Negotiated-Congestion Routing (NCR)
• NCR maintains "history" in terms of which regions 

attracted too many nets
• NCR increases routing cost according to the historical 

popularity of the regions
− The nets with alternative routes are forced to take those routes
− The nets that do not have good alternatives remain unchanged
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Some Points about EDA Tools 
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Q: Do tools give different answers when 
you run them multiple times?

A:  Maybe, but why would that be bad?
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Noise in Production Design Flow

• Two major sources of noise
• Miscorrelation in parasitics extractor and timer
• Suboptimality of heuristic optimization engines

• Most design optimization problems are NP-hard  Heuristic 
approaches have been used

• Heuristics lead to “NOISE” that creates variability in solution quality

• Exploting noise in design flow
• Use idle machines: we can choose 

• best solution among N different solutions
• Example:  Best-of-k method
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Miscorrelation: Implementation vs. Signoff

• Experiment setup
• Testcases: 

• aes_cipher_top
• jpeg_encoder

• Tools
• SOCE / Astro

• Results
• Most cases, P&R tools underestimate 

timing slack; increasing TAT needed 
to fix violations at signoff

• There is no clear trend – i.e., not clear 
what factors cause miscorrelation

• Conventional approaches
• RC derating in implementation tools 

to have pessimistic delay

• Possible sources of miscorrelation
– RC lookup table, distribute RC 

model, delay model, coupling 
calculation, reconvergence path 
analysis, etc.

-0.350 

-0.300 

-0.250 

-0.200 

-0.150 

-0.100 

-0.050 

0.000 

-0.350 -0.250 -0.150 -0.050 0.050 

Si
gn

of
f (P

rim
eT

im
e)

Implementation (SOCE , Astro)

Astro vs. PrimeTime

SOCE vs. PrimeTime

~200ps underestimation

Worst negative slack comparison
From 29 testcases



Puneet Gupta (puneet@ee.ucla.edu)

Inherent Noise: Ignorable Perturbation 
vs. Results

• Slight changes in design constraints can make significant 
difference in final timing

• Possible knobs to perturb in design constraints
• Clock cycle time
• Clock uncertainty
• IO delay constrants
• RC values

• Loose timing constraints do not always improve timing
• 0.1ps change in constraint  > 50ps change in signoff timing

• Noise is really random!   Difficult to predict
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Inherent Noise: Example Results

Design Criticality Clock
(ns)

“S” “A” “B”
With original Clock With original Clock With original Clock

Setup Setup Setup
WNS

(SOCE)
(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

WNS
(Astro)

(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

WNS(BF)
(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

AES

Tight clock
(original
2.2ns)

2.1998 -0.407 -0.430 -81.124 -0.241 -0.487 -94.822 -0.077 -0.391 -60.156 
2.1999 -0.392 -0.420 -73.533 -0.218 -0.512 -89.316 -0.067 -0.397 -58.728 
2.2000 -0.399 -0.457 -85.641 -0.255 -0.569 -100.956 -0.081 -0.331 -59.985 
2.2001 -0.436 -0.439 -82.053 -0.280 -0.535 -110.341 -0.074 -0.442 -61.048 
2.2002 -0.406 -0.441 -82.576 -0.246 -0.490 -92.196 -0.067 -0.384 -51.980 

Loose clock
(original
3.0ns)

2.9998 -0.026 -0.119 -1.965 0.040 -0.280 -35.482 0.000 -0.342 -44.778 
2.9999 -0.091 -0.095 -2.137 0.064 -0.325 -34.699 0.001 -0.469 -46.154 
3.0000 -0.046 -0.096 -3.499 0.049 -0.346 -36.565 -0.001 -0.448 -48.369 
3.0001 -0.049 -0.112 -1.972 0.083 -0.239 -23.040 -0.008 -0.373 -44.683 
3.0002 -0.061 -0.078 -1.718 0.057 -0.287 -31.985 0.000 -0.421 -48.042 

JPEG

Tight clock
(original
1.3ns)

1.2998 -0.294 -0.315 -625.434 -0.265 -0.352 -744.637 -0.228 -0.324 -501.295 
1.2999 -0.263 -0.281 -566.317 -0.240 -0.418 -701.361 -0.166 -0.266 -410.594 
1.3000 -0.257 -0.258 -537.580 -0.256 -0.395 -733.841 -0.244 -0.338 -567.228 
1.3001 -0.249 -0.303 -561.013 -0.239 -0.321 -719.196 -0.202 -0.304 -475.253 
1.3002 -0.298 -0.514 -757.272 -0.229 -0.346 -731.566 -0.197 -0.277 -471.392 

Loose clock
(original
2.0ns)

1.9998 -0.005 -0.011 -0.011 0.101 -0.140 -0.520 0.000 -0.216 -11.407 
1.9999 0.008 -0.068 -0.068 0.101 -0.140 -0.520 0.000 -0.167 -12.021 
2.0000 -0.007 -0.093 -0.137 0.101 -0.131 -1.240 -0.002 -0.196 -15.189 
2.0001 -0.001 -0.010 -0.010 0.096 -0.098 -0.449 0.001 -0.181 -16.782 
2.0002 0.008 -0.004 -0.006 0.099 -0.066 -0.279 -0.006 -0.178 -12.220 
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Q: Why do chips pass timing signoff in 
design, but then fail to yield in the fab?

A: Signoff criteria are different from 
manufacturing criteria.
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Problem: Path Index Migration/Miscorrelation
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No Two Chips are 
Identical

• Manufacturing variation is the reality.
• “Corners” (FF, SS, typical) try to approximate them

• Do NOT expect models to be “accurate”
• Manufacturing process is always a random variable 

with a distribution
• Corollary: wasting time on 1ps improvement is 

useless
• Corollary: wasting time on 1nm dimension change 

is useless and often not permitted by design rules
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Q: Can I do better than the tool?

A: Very unlikely.
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EDA tools are (usually) well optimized

• Experience
• You: 0-10 designs
• EDA tool: 1000s of designs over years/decades

• Correctness
• You: prone to making mistakes
• EDA tool: any bugs ironed out over experience

• Quality of results
• You: may be can do a better job with 100 gate designs
• EDA tool: Optimized algorithms to deal with millions of gates

• Cost and Effort
• You: a graduate engineer paid costing a company $200K+/year
• EDA tool: hardware cost: $10K/year for 32 processor server which can churn million gate 

SP&R overnight + tool cost ($10K-$500K/year amortized over many designers)

• Weird, strange constraints or objectives
• This is where you may have an edge. Tools are optimized to handle the common case and 

some not so common cases (through a large number of visible and hidden switches)
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Q: Can I get away with no 
“programming” being a designer?

A: Not really, at least if you want to be 
an effective digital designer.
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Managing Complex Designs requires 
Methodologies  Scripting

• You may not need to write complex C++ code but scriptware is very common
• Timers, SP&R, most EDA tools: TCL is the defacto standard scripting language. 

• Industry-strength tool flows often have 1000s of lines of TCL scripts

• Running PV (e.g., Calibre): its own SVRF scripting language
• Managing design databases (OpenAccess, Milkyway, etc) using TCL, Python, 

SKILL,….
• Parsing reports, automating tool flows, managing files: Shell scripts, Perl, Python, 

TCL…
• Opening tool GUIs is more of an exception than norm

• Its preferred to launch noGUI scripts and wait for runs to complete
• May be use the GUI or the tool shell to debug

• Unix/Linux is the near-universal standard (Windows/MAC support is 
minimal): Learn how to use Linux and Linux shell utilities effectively!

• Jobs are launched often on large server farms  learn how to use compute 
cluster tools (e.g., LSF)
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Q: Can I just ask somebody if I get stuck 
using a tool?

A: Not always, learn to debug yourself!
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Debugging yourself

• “Big” companies may have internal tool support and external 
application engineering support which may be sufficient
• But no one appreciates “trivial” questions

• “Small” companies, universities get little tool support
• Universities get near zero

• Debugging yourself
• Google! 
• Tools have extensive documentation

• User guides, reference manuals, man/info pages, application notes

• Message boards on EDA company websites
• Resist the urge to post on Piazza (or CAD support team) the first 

instant you see an error. Most tool errors are informative which help 
you debug.
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Q: How do I search for prior art ?

A: Google Scholar
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Literature search 101

• Very few things are truly “new”
• Best (current) way of searching literature: Google 

Scholar (searches books, papers, patents)
• Think of keywords on the topic and what might be 

one hop away
• Remember “i” in Math is “j” in EE!
• My TSP is your scan chain ordering!

• Everything in Google Scholar has “cites” and “cited 
by”. This allows you to systematically trace literature.
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