
Logistics
 I hope you are making progress toward final project
 Lab 5 will be assigned on Thursday

 A Calibre tutorial in class over Zoom



Lecture 15: Parasitic Extraction

ECE201A
Some notes adopted from  
Andrew B. Kahng



Layout Parasitic Extraction
• GOAL: Generate “real” RC model of interconnect
• Necessary step after routing
• Extraction can generate various types of data:

• RC (dspf/rspf/spef/set_load)
• Custom Wire Load Model
• LEF capacitance coefficients

• Account for non-ideal nature of interconnect
• Wire capacitance
• Wire and via resistance

• Parasitic information is used in post-layout verification
• Timing verification of synchronous circuits
• Functional verification of asynchronous circuits

• Design performance is ultimately limited by parasitics



Uses of Parasitic Estimation

Example: to produce RC tree 
network for Elmore or other moment-
based delay analysis

Example: to produce RC network for 
crosstalk analysis
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Post-Layout Parasitic Extraction
Must perform after routing
Account for non-ideal nature of 
interconnect

Wire capacitance
Wire and via resistance

Parasitic information is used in post-
layout verification

Timing verification of synchronous 
circuits
Functional verification of asynchronous 
circuits

Design performance is ultimately 
determined by parasitics



Parasitic Estimation (Two Basic Steps)

Electromagnetic
Analysis 

millions of elements

thin volume 
filaments
with constant 
current

small surface 
panels
with constant 
charge

Model Order
Reduction

tens of elements
Slide courtesy L. Daniel



Parallel-plate capacitor
Voltage: 
Q and –Q are induced on both plates;                          Q is 

proportional to V
This is a ratio : C = Q/V 
If plate dimension is large compared to spacing d:

Other familiar capacitors

Capacitance

1 2V φ φ= −

coaxialinterdigitated

http://learn.tsinghua.edu.cn:8080/2003990088/papers/RLC_extraction.ppt

Permittivity (how much charge a 
given material can store in a unit 
volume) of free space (vacuum) 
(F/m)

Relative permittivity of material, 
e.g., 3-7-3.9 for SiO2



Capacitance Matrix

Given a collection of N conductors (of any shape and dimension), Q = CV
• “3D” RCX: Set voltages on conductors, solve for charge to find C values. Use 

Finite Element or other methods 
• E.g., Synopsys Raphael

fringing parallel
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• Simple structures can have accurate analytical formulae
• Unlike resistance, capacitance is a function not only of a wire’s own geometry, but of its 

environment as well
• Errors with respect to full-chip analysis helped by locality of electrostatics
• Methods:  analytical, 1D/2D, 2.5D, 3D

• 1D: Cap function of length (other lateral or z direction geometries need to be “averaged”)
• 2D: Cap accounts for lateral geometries, z needs to be averaged

• C = k1 Area + k2 Perimeter + k3 Coupling_length / Coupling_spacing

• 3D: true 3D solution

Capacitance Extraction in Practice

Cap/unit 
length

2D methods use fitted approximations to 
capture 3D effects



2.5D Capacitance Extraction

Compromise: 2.5D extraction
 Compromise between speed and accuracy
 Models 3D effects by a combination of two orthogonal 2D structures
 E.g., two cross-section views on the x-z and y-z planes, z is the vertical 

axis going through layers
 Compose the two 2D solutions to construct the 3D solution



Commercial tools
Task: full-chip, full-path extraction
Goal:  error ≤10%, runtime ~ overnight for given process

Capacitance Extraction in Practice

lateral

fringing parallel

From “Digital Integrated Circuits”, 2nd Edition, 
Copyright 2002 J. Rabaey et al.

Error > 10%

http://learn.tsinghua.edu.cn:8080/2003990088/papers/RLC_extraction.ppt



How Modern Chip-Scale (quasi) 3D 
Capacitance Extractor Works

• Technology pre-characterization
• generate coefficients with 3D field solver for 

“representative” sample of patterns
• Patterns = cross-sections through “tunnel” that contains a 

section of the victim net
• For given process, generate geometric patterns

• Reduce number of geometric parameters and patterns: 
symmetry, shielding effects, etc.

• How big can the pattern library be ?
• Create a big look-up table
• Time consuming, but only done once
• Each layer of interconnect added to the cross-section 

roughly doubles time for coefficient generation
• Extraction

• Chop layout into pieces
• Match patterns to lookup table entries
• Combine capacitances

• Example commercial tools:
• Cadence Quantus
• Mentor Calibre XRC
• Synopsys StarRC



LEF Coefficients
• LEF Resistance is sheet resistance: RPERSQ

• RPERSQ: any square wire would have resistance of RPERSQ Ohms
• To calculate resistance of a wire R = RPERSQ * (aspect ratio of wire)

• LEF capacitance values are 2D
• CPERSQDIST: overlap cap per unit micron^2
• EDGECAPACITANCE: fringe cap per unit micron
• C  = (CPERSQDIST x wire width x wire length) + (EDGECAPACITANCE x 2 (wire 

width + wire length)
• Capacitance coefficients are statistical in deep-submicron

• Effective area and edge capacitance dependent on surrounding routing
• Congested blocks have higher effective capacitance



Formats: SPEF
*D_NET *2 6.58027e-05

*CONN
*I *26:A I *C 4 5 *L 0 *D INV_X1
*P *2 I *C 4 6 *L 0

*CAP
1 *26:A 2.82188e-06
2 *2:1 2.82188e-06
3 *2:2 3.00794e-05
4 *2 3.00794e-05

*RES
1 *2:2 *2 2.625
2 *2:1 *2:2 1
3 *26:A *2:1 0.409231
*END



Physical Verification

ECE201A

Some notes adopted from 
Andrew B. Kahng
Lei He
Igor Markov
Mani Srivastava
Mohammad Tehranipoor



Polygon Representation

• How to store polygons (really want 
integers to avoid catastrophic rounding 
errors)
• E.g., DBU = 0.5nm; max chip size = 5cm max x/y 

coordinate = 1cm/1nm  18 bits  32 bit “int” 
storage = 4 bytes

• Lets limit ourselves to rectangles  16 bytes per 
rectangle
• Assume layout is packed with 100nmx100nm 

rectangles in a 1cmx1cm chip  10B rectangles 
160GB!

• 10 metal layers  1.6TB memory to operate on a 
layout! 

• Need a more compact polygon storage
• What can we do ?



Reducing Memory

• Leverage hierarchy: create a “master” 
and then instantiate it just with a “pointer” 
everywhere else.
• Downside: reconstructing requires traversal of the 

hierarchy.
• Most polygons are “small”  it is better to 

store “deltas” rather than absolute 
coordinates relative to origin of the 
polygon.
• May compress further knowing that most 

rectangles have a major axis  less storage for 
delta (or extent) in the minor axis direction



How to Do Boolean Operations on 
Polygons ?: A Rectangle Intersection 
Example
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Intersecting Two Rectangles

• A rectangle is represented by {LL, TR}: 
• Two rectangles overlap if 

• TR_x(1) >= LL_x(2) && TR_x(2) >= LL_x(1)
• TR_y(1) >= LL_y(2) && TR_y(2) >= LL_y(1)

• Intersection rectangle is
• TR = min(TR_1, TR_2)
• LL = max(LL_1, LL_2)



Overall Algorithm

• Naieve method: Check all rectangle pairs
• O(n2)
• Impractically slow (n ~ 1B)

• How do we speed things up ?
• Do we need to check all pairs of rectangles ?



Scanline Algorithm: An Event-
Based Approach
• Move a vertical “scanline” left to right

• Sort rectangles by x-coordinate and process in this 
order stopping at left & right endpoints

• Add rectangles when they “enter” and delete them 
when they “exit”

• Only the rectangles currently in the scanline set 
can intersect



Improving Simple Scanline

• Why do we expect scanline algorithm to help ?
• Which direction should we scan ?

• Left to right vs. top to down 
• Improve further by storing the rectangle intervals in an 

interval search tree  O(n log n) search for intersections
• Overall algorithm is O(n log n) as well

• Sorting before starting scanline is O(n log n)



5 min break



Hierarchical Layout Operations



Hierarchical vs. Flat Layout

Flat Hierarchy



Why Hierarchy?

• Less memory
• Same cell instantiated multiple times

• Less processing time
• Repeated structure verified “once”

• Better results in verification (designer 
perspective)
• E.g. DRC : reporting a much smaller set of 

violations  easier debugging



Challenges in Hierarchical 
Processing

• Cell neighborhood/instantiation affect results
• Also Cells may overlap
• Different orientations of cells

• Migration/Compaction:
• Multiple instances of same cell  different sets of 

constraints BUT ONE output cell
• Working on hierarchical view different results 

from  working on flat view of same layout
• Hierarchical DRC is NP-complete



Hierarchical 
Verification Flow

1. Check all leaf cells. 
2. For each cell

build an abstract:  
a (hopefully) simpler version of the cell that only 
contains features that are needed for checking cell 
interactions. 

3. Start at hierarchy level 1 (from leaf)
4. Verify cells of current hier. level:

a. Substitute with cell abstracts
b. Run flat verification algorithm on resulting data

5. Prepare abstract for the next higher level
6. Repeat till top of hierarchy



Example

a: cell
b: hierarchical layout
c: Abstract of cell



LVS Flow
LVS: Layout vs. Schematic
1. Extract transistor-level netlist (SPICE) from polygonal 

layout
2. Convert post P&R Verilog/DEF into a transistor level 

netlist 
3. Compare the two netlists

1. Convert them to graphs
2. Are the two graphs isomorphic (i.e., twisted versions of 

each other) ?



Netlist extraction
• Identifies connected components

• Abutting shapes in same layer
• Wires connected through vias
• Terminal connections for MOS transistors

• Connections can be identified during forward scanline 
processing
• New label is started with a new (unconnected) shape
• Two labels are merged when an intersection is detected as scanline 

goes along



Netlist extraction (contd.)

• Connections on far end cannot be 
predicted
• Problem especially for power/ground connections

• Deal with this issue by having a backward pass or 
relabeling after the forward scanline pass

• How to handle multiple layers
• A scanline for each layer
• Merge labels when a via is detected

Label 2 Label 2

Label 1 Label 1



Graph Isomorphism

• Circuit comparison is equivalent to testing of 
graph-isomorphism
• Graph isomorphism: is there any mapping of vertices and 

edges from Graph 1 to Graph 2 which makes them the 
same

• No efficient deterministic algorithm
• Limited degree of graph nodes except few, e.g. VDD, GND, Clock 

helps.
• Can be solved by canonical labeling method (both graphs if 

isomorphic will have same labeling).



Some Points about EDA Tools 



Q: Do tools give different answers when you 
run them multiple times?

A:  Maybe, but why would that be bad?



Noise in Production Design Flow

• Two major sources of noise
• Miscorrelation in parasitics extractor and timer
• Suboptimality of heuristic optimization engines

• Most design optimization problems are NP-hard  Heuristic 
approaches have been used

• Heuristics lead to “NOISE” that creates variability in solution quality

• Exploting noise in design flow
• Use idle machines: we can choose 

• best solution among N different solutions
• Example:  Best-of-k method
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Miscorrelation: Implementation vs. Signoff

• Experiment setup
• Testcases: 

• aes_cipher_top
• jpeg_encoder

• Tools
• SOCE / Astro

• Results
• Most cases, P&R tools 

underestimate timing slack; 
increasing TAT needed to fix 
violations at signoff

• There is no clear trend – i.e., not 
clear what factors cause 
miscorrelation

• Conventional approaches
• RC derating in implementation tools 

to have pessimistic delay

Possible sources of 
miscorrelation

RC lookup table, distribute RC model, 
delay model, coupling calculation, 
reconvergence path analysis, etc.-0.350 
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Inherent Noise: Ignorable Perturbation 
vs. Results
• Slight changes in design constraints can make 

significant difference in final timing
• Possible knobs to perturb in design constraints

• Clock cycle time
• Clock uncertainty
• IO delay constrants
• RC values

• Loose timing constraints do not always improve 
timing
• 0.1ps change in constraint  > 50ps change in signoff timing

• Noise is really random!   Difficult to predict



Inherent Noise: Example Results

Design Criticality Clock
(ns)

“S” “A” “B”
With original Clock With original Clock With original Clock

Setup Setup Setup
WNS

(SOCE)
(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

WNS
(Astro)

(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

WNS(BF)
(ns)

WNS (PT)
(ns)

TNS (PT)
(ns)

AES

Tight clock
(original
2.2ns)

2.1998 -0.407 -0.430 -81.124 -0.241 -0.487 -94.822 -0.077 -0.391 -60.156 
2.1999 -0.392 -0.420 -73.533 -0.218 -0.512 -89.316 -0.067 -0.397 -58.728 
2.2000 -0.399 -0.457 -85.641 -0.255 -0.569 -100.956 -0.081 -0.331 -59.985 
2.2001 -0.436 -0.439 -82.053 -0.280 -0.535 -110.341 -0.074 -0.442 -61.048 
2.2002 -0.406 -0.441 -82.576 -0.246 -0.490 -92.196 -0.067 -0.384 -51.980 

Loose clock
(original
3.0ns)

2.9998 -0.026 -0.119 -1.965 0.040 -0.280 -35.482 0.000 -0.342 -44.778 
2.9999 -0.091 -0.095 -2.137 0.064 -0.325 -34.699 0.001 -0.469 -46.154 
3.0000 -0.046 -0.096 -3.499 0.049 -0.346 -36.565 -0.001 -0.448 -48.369 
3.0001 -0.049 -0.112 -1.972 0.083 -0.239 -23.040 -0.008 -0.373 -44.683 
3.0002 -0.061 -0.078 -1.718 0.057 -0.287 -31.985 0.000 -0.421 -48.042 

JPEG

Tight clock
(original
1.3ns)

1.2998 -0.294 -0.315 -625.434 -0.265 -0.352 -744.637 -0.228 -0.324 -501.295 
1.2999 -0.263 -0.281 -566.317 -0.240 -0.418 -701.361 -0.166 -0.266 -410.594 
1.3000 -0.257 -0.258 -537.580 -0.256 -0.395 -733.841 -0.244 -0.338 -567.228 
1.3001 -0.249 -0.303 -561.013 -0.239 -0.321 -719.196 -0.202 -0.304 -475.253 
1.3002 -0.298 -0.514 -757.272 -0.229 -0.346 -731.566 -0.197 -0.277 -471.392 

Loose clock
(original
2.0ns)

1.9998 -0.005 -0.011 -0.011 0.101 -0.140 -0.520 0.000 -0.216 -11.407 
1.9999 0.008 -0.068 -0.068 0.101 -0.140 -0.520 0.000 -0.167 -12.021 
2.0000 -0.007 -0.093 -0.137 0.101 -0.131 -1.240 -0.002 -0.196 -15.189 
2.0001 -0.001 -0.010 -0.010 0.096 -0.098 -0.449 0.001 -0.181 -16.782 
2.0002 0.008 -0.004 -0.006 0.099 -0.066 -0.279 -0.006 -0.178 -12.220 



Q: Why do chips pass timing signoff in 
design, but then fail to yield in the fab?

A: Signoff criteria are different from 
manufacturing criteria.



Problem: Path Index Migration/Miscorrelation
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No Two Chips are Identical

• Manufacturing variation is the reality.
• “Corners” (FF, SS, typical) try to approximate them

• Do NOT expect models to be “accurate”
• Manufacturing process is always a random variable 

with a distribution
• Corollary: wasting time on 1ps improvement is 

useless
• Corollary: wasting time on 1nm dimension change 

is useless and often not permitted by design rules



Q: Can I do better than the tool?

A: Very unlikely.



EDA tools are (usually) well optimized

• Experience
• You: 0-10 designs
• EDA tool: 1000s of designs over years/decades

• Correctness
• You: prone to making mistakes
• EDA tool: any bugs ironed out over experience

• Quality of results
• You: may be can do a better job with 100 gate designs
• EDA tool: Optimized algorithms to deal with millions of gates

• Cost and Effort
• You: a graduate engineer paid costing a company $200K+/year
• EDA tool: hardware cost: $10K/year for 32 processor server which can churn million gate 

SP&R overnight + tool cost ($10K-$500K/year amortized over many designers)
• Weird, strange constraints or objectives

• This is where you may have an edge. Tools are optimized to handle the common case and 
some not so common cases (through a large number of visible and hidden switches)



Q: Can I get away with no “programming” 
being a designer?

A: Not really, at least if you want to be an 
effective digital designer.



Managing Complex Designs requires 
Methodologies  Scripting

• You may not need to write complex C++ code but scriptware is very
common
• Timers, SP&R, most EDA tools: TCL is the defacto standard scripting language. 

• Industry-strength tool flows often have 1000s of lines of TCL scripts
• Running PV (e.g., Calibre): its own SVRF scripting language
• Managing design databases (OpenAccess, Milkyway, etc) using TCL, Python, 

SKILL,….
• Parsing reports, automating tool flows, managing files: Shell scripts, Perl, 

Python, TCL…
• Opening tool GUIs is more of an exception than norm

• Its preferred to launch noGUI scripts and wait for runs to complete
• May be use the GUI or the tool shell to debug

• Unix/Linux is the near-universal standard (Windows/MAC support is 
minimal): Learn how to use Linux and Linux shell utilities effectively!

• Jobs are launched often on large server farms  learn how to use 
compute cluster tools (e.g., LSF)



Q: Can I just ask somebody if I get stuck 
using a tool?

A: Not always, learn to debug yourself!



Debugging yourself

• “Big” companies may have internal tool support and 
external application engineering support which may be 
sufficient
• But no one appreciates “trivial” questions

• “Small” companies, universities get little tool support
• Universities get near zero

• Debugging yourself
• Google! 
• Tools have extensive documentation

• User guides, reference manuals, man/info pages, application notes
• Message boards on EDA company websites
• Resist the urge to post on Piazza (or CAD support team) the first 

instant you see an error. Most tool errors are informative which 
help you debug.



Q: How do I search for prior art ?

A: Google Scholar



Literature search 101

• Very few things are truly “new”
• Best (current) way of searching literature: 

Google Scholar (searches books, papers, 
patents)

• Think of keywords on the topic and what might 
be one hop away
• Remember “i” in Math is “j” in EE!
• My TSP is your scan chain ordering!

• Everything in Google Scholar has “cites” and 
“cited by”. This allows you to systematically 
trace literature.
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