Lecture 3: Logic Synthesis

ECE201A

Some notes adopted from
Andrew B. Kahng

Lei He

Igor Markov

Mani Srivastava
Synopsys

Various Sources

Logistics

* Lab 1 has been posted on Piazza.

— OpenAccess (as any design database) can be a
struggle for first timers. Give yourself enough time
in Lab 1 to get the hang of it

— Learn to use the OA documentation

e Classes , derived classes, methods...

— Second half of today’s lecture: OA tutorial

* Today’s lecture: logic synthesis

Puneet Gupta (puneet@ee.ucla.edu)

RTL vs. Gate Level

module markl;

reg [31:0] m[0:8192];
* RTL: Cycle accurate model “close” reg [12:0] pc;
reg [31:0] acc;

to the hardware implementation req[15:0] ir;

— bit-vector data types and operations as

)] always
abstraction from bit-level begin
implementation ir = mpcl;

1f(1ir[15:13] == 3b’000)
— sequential constructs (e.g. if - then - pc = m[ir[12:0]];

: . else 1f (ir[1l5:13] == 3'b010)
else, while loops) to support modeling ce = —m[ir[12:011;
of complex control flow

. end
* Gate-level: Model as finite-state endmodule
machine >

=908 T b
— models function in Boolean logic using :D@ns

registers and gates >
— various delay models for gates and r
wires !

Puneet Gupta (puneet@ee.ucla.edu)

LA
What is Logic Synthesis ?

RTL Verilog/ VHDL /%L Synthesis }% Gate-level Verilog/VHDL

Timing constraints T

Library

* How?’
— Instantiation of primitives (e.g., AND)
— Macro substitution (e.g., if-else 2 MUX)
— Inference (e.g., variable declare = memory)
— Logic minimization
— Logic restructuring (e.g., retiming)
— Miscellaneous: buffer insertion, sizing, pin-swapping, etc

— Physical input: wireload models, placement-driven synthesis
* Objectives

— Timing, area, power

Puneet Gupta (puneet@ee.ucla.edu)

LA

Typical Synthesis Scenario

- read HDL
- control/data flow analysis

- ‘“elaborate” design (loop
unrolling, initialize..)

- “translate/analyze” design
(extract FSM, resource sharing..)

- basic logic restructuring and
minimization
- crude measures for goals

- use logic gates from target
cell library

- timing optimization
- physically driven optimizations

High Level Optimization 1: LA
Resource Sharing

Given the following HDL description:

* Two operations can be rleeleet

sum <= A + B;

shared only if no execution " im <= ¢+
path that reaches b()th One possible implementation:
. . A_
operations exists from the |+
start of the block to the end . MUX|—sum
of the block o | T H
— A+B/C+D cant be shared select
/1 <= A+B; Another, more efficient implementation.
JICOND) A T
72 <=C+D c]
select + [——sum
B
D MUX_I_

Puneet Gupta (puneet@ee.ucla.edu)

Resource Sharing: Solving It

* Construct a conflict graph Conflict graph
— Nodes: resources @_@
— Edge: if two resources cant be shared = @
conflict

— Question: if in the right graph all nodes are

“adders”. What is the minimum number of

adders needed for this Verilog ?
* Find the chromatic number ot the graph

— Color the nodes of the graph with minimum
number of colors so that no two connected
nodes have same color

— NP Complete problem! = rely on heuristics

Puneet Gupta (puneet@ee.ucla.edu)

High-Level Optimization 2: LA
Implementation Selection

Brent-Kung

fastest

% | Carry Look-Forward
u

| || || I

1 Carry Look-Ahead E

u
+ Ripple Carry +

HDL Operator

smallest

Puneet Gupta (puneet@ee.ucla.edu)

High-Level Optimization 3 —
Operator Re-ordering

Initial Order
- from left to right

Optimised for Speed
- same delay for all inputs

Optimised for Speed
- re-ordering due to large
input delay for A

Puneet Gupta (puneet@ee.ucla.edu)

A
>—
B +
D— .
+
> L suM
g + >
A
>—]
B +
B L] SUM
C + D
D + -
>—
Late A
[
E} * SUM
[
C +
[D— —
D +
>—

Note: Operators can not be re-arranged if initial order
is overridden by use of parenthesis in HDL

High-Level Optimization 4 —
Common Sub Expression Sharing

(G

A BCA BDB AE A BZC D E
| | |
J Sharing of Sub- \
\ﬂ') Expressions
-
SUM1 SUM2 SUM3 SUM1 SUM2 SUM3

Note: Order of within the Sub-Expressions is not important,
but the positions must be the same

Puneet Gupta (puneet@ee.ucla.edu)

Basic Logic Model: LA
Finite State Machines

M(X,Y,S,S,,5,1):

X=(Xq,%9,..,%,) Y=(Y1,Ya:--:Yn) X: Inputs
A Y: OQutputs
S=(s1,%5,...,5,) 5 S'=(s',,85,...,8,) S Current State
—] Sp- Initial State(s)
_— &: X~ S — S (next state function)

r: X ° S =Y (output function)

Delay element:
+ Clocked: synchronous
* single-phase clock, multiple-phase clocks
* Unclocked: asynchronous

General Logic Structure

latches

* Combinational optimization
— Keep latches/registers at current position, keep their function
— Optimize combinational logic in between

* Sequential optimization

— Change latch position/function
Puneet Gupta (puneet@ee.ucla.edu)

Optimization Cost Criteria

Area occupied by the logic gates and interconnect
(approximated by literals = transistors in technology
independent optimization)

Critical path delay of the longest path through the logic
Power consumed by the logic gates
Noise Immunity

Routability

while simultaneously satistying upper or lower bound

constraints placed on these physical quantities

Puneet Gupta (puneet@ee.ucla.edu)

Logic Optimization Methods LA

* Two-level logic optimization

— For sum-of-products (SOP)

implementation on PLAs, fewer

product terms and fewer inputs to each

product term mean smaller area. + ‘ ::D_ 02
— Karnaugh maps, Quine-McCluskey, O1=1112+ 1112
Espresso 02=11"12
— E.g,F1=AB + AC+ AD; F2 =A'B +
AC+ AE

* Multi-level logic

— Eg,P=B+CGF, = AP+ AD;
F,= AP+ A'E =2 3 levels = logic

sharing = smaller area

— Difficult to optimize

Boolean Functions

%) : B™ B

B={0,1},x = (x, Xy, ..., X

X, X,, ... are variables

X4, X;, X, X, ... are literals

each vertex of B" is mapped to 0 or 1
the onset of f1s a set of input values for
which {(x) =1

the offset of f1s a set of input values for
which f(x) =0

Puneet Gupta (puneet@ee.ucla.edu)

Logic Functions: f(z) : B" — B LA

111
001 01 1
010 011] => 0
100 000 101 1
Xa | 000 101 3 / 10 0
— 111
X4 "truth table"

There are 2™ vertices in input space B

There are 22" distinct logic functions. Each sub-
set of vertices is a distinct logic function: fl C B"

There are oo number of logic formulas
f x+y

xy + xy + TY

*T + 27 + ¥

= (e+wE+79) +7Ty

SYNTHESIS = Find the "best” formula (or " representation”)

Puneet Gupta (puneet@ee.ucla.edu) Slide courtesy of Devadas, et. al

Cube Representation

4 011 111

e N-dimensional cube

— Marking top points in which function has individual values,

oS , , . 001 101
receive its geometrical representation, for example function

Y=V (3,4,5,6,7) 1s shown
* A SOP can be thought of as a set of cubes. A set of

cubes that represents f 1s called a cover of f. 000 100
— F={ab, ac, bc} is a cover of f = ab + ac + bc.

01
110

<

* Prime Cube (Prime Implicant): if there 1s no other cube N A
that contains it = removing a literal will make it ‘
invalid C /

— E.g, b1s prime but b¢ is not /

* Prime Cover: if all contained cubes are prime —>" b

Puneet Gupta (puneet@ee.ucla.edu)

Irredundant Covers

e A cube c of a cover C is irredundant
if C fails to be a cover if c is

dropped from C

* A cover 1s irredundant (minimal) iffC /
all its cubes are irredundant (for . Not
example, F=ab+ac+bc) a covered

* Logic minimization:
— find a minimum prime and
irredundant cover for a given
function.

* Prime cover leads to min number
of inputs to each product term.

* Min irredundant cover leads to min
number of product terms.

Puneet Gupta (puneet@ee.ucla.edu)

5 min break

	Lecture 3: Logic Synthesis
	Logistics
	RTL vs. Gate Level
	What is Logic Synthesis ?
	Typical Synthesis Scenario
	High Level Optimization 1: Resource Sharing
	Resource Sharing: Solving It
	High-Level Optimization 2: Implementation Selection
	High-Level Optimization 3 – Operator Re-ordering
	High-Level Optimization 4 – Common Sub Expression Sharing
	Basic Logic Model:�Finite State Machines
	General Logic Structure
	Optimization Cost Criteria
	Logic Optimization Methods
	Boolean Functions
	Logic Functions:
	Cube Representation
	Irredundant Covers
	5 min break

