
Puneet Gupta (puneet@ee.ucla.edu)

Lecture 3: Logic Synthesis

ECE201A
Some notes adopted from
Andrew B. Kahng
Lei He
Igor Markov
Mani Srivastava
Synopsys
Various Sources

Puneet Gupta (puneet@ee.ucla.edu)

Logistics

• Lab 1 has been posted on Piazza.
– OpenAccess (as any design database) can be a

struggle for first timers. Give yourself enough time
in Lab 1 to get the hang of it

– Learn to use the OA documentation
• Classes , derived classes, methods…

– Second half of today’s lecture: OA tutorial

• Today’s lecture: logic synthesis

Puneet Gupta (puneet@ee.ucla.edu)

RTL vs. Gate Level

• RTL: Cycle accurate model “close”
to the hardware implementation
– bit-vector data types and operations as

abstraction from bit-level
implementation

– sequential constructs (e.g. if - then -
else, while loops) to support modeling
of complex control flow

• Gate-level: Model as finite-state
machine
– models function in Boolean logic using

registers and gates
– various delay models for gates and

wires

module mark1;
reg [31:0] m[0:8192];
reg [12:0] pc;
reg [31:0] acc;
reg[15:0] ir;

always
 begin
 ir = m[pc];
 if(ir[15:13] == 3b’000)
 pc = m[ir[12:0]];
 else if (ir[15:13] == 3’b010)
 acc = -m[ir[12:0]];
 ...
 end
endmodule

4ns3ns
5ns

Puneet Gupta (puneet@ee.ucla.edu)

What is Logic Synthesis ?

• How ?
– Instantiation of primitives (e.g., AND)
– Macro substitution (e.g., if-else  MUX)
– Inference (e.g., variable declare  memory)
– Logic minimization
– Logic restructuring (e.g., retiming)
– Miscellaneous: buffer insertion, sizing, pin-swapping, etc
– Physical input: wireload models, placement-driven synthesis

• Objectives
– Timing, area, power

SynthesisRTL Verilog/VHDL Gate-level Verilog/VHDL

Library

Timing constraints

Puneet Gupta (puneet@ee.ucla.edu)

Typical Synthesis Scenario
- read HDL
- control/data flow analysis
- “elaborate” design (loop

unrolling, initialize..)
- “translate/analyze” design

(extract FSM, resource sharing..)

- basic logic restructuring and
minimization
- crude measures for goals

- use logic gates from target
 cell library

- timing optimization
- physically driven optimizations

RTL to Network Transformation

Technology independent Optimizations

Technology Mapping

Technology Dependent Optimizations

Puneet Gupta (puneet@ee.ucla.edu)

High Level Optimization 1:
Resource Sharing

• Two operations can be
shared only if no execution
path that reaches both
operations exists from the
start of the block to the end
of the block
– A+B/C+D cant be shared

Z1 <= A+B;
If(COND)

Z2 <=C+D

Given the following HDL description:
if (select)

sum <= A + B;
else

sum <= C + D;

+

+
MUX

A

B

C
D

sum

select

+

A
C

B
D

sumselect

MUX

MUX

One possible implementation:

Another, more efficient implementation.

Puneet Gupta (puneet@ee.ucla.edu)

Resource Sharing: Solving It

• Construct a conflict graph
– Nodes: resources
– Edge: if two resources cant be shared 

conflict
– Question: if in the right graph all nodes are

“adders”. What is the minimum number of
adders needed for this Verilog ?

• Find the chromatic number of the graph
– Color the nodes of the graph with minimum

number of colors so that no two connected
nodes have same color

– NP Complete problem!  rely on heuristics

Conflict graph

1 2

3 4

5

Puneet Gupta (puneet@ee.ucla.edu)

High-Level Optimization 2:
Implementation Selection

Brent-Kung

Carry Look-Forward

Ripple Carry

Carry Look-AheadHDL Operator

+

fastest

smallest

Z <= A*B + C

Puneet Gupta (puneet@ee.ucla.edu)

High-Level Optimization 3 –
Operator Re-ordering

SUM <= A + B + C + D
A

C
SUM

+

+
B

+D

A

B
SUM

+

C

D +

+

Initial Order
- from left to right

Optimised for Speed
- same delay for all inputs

Optimised for Speed
- re-ordering due to large

input delay for A

Late A

C
SUM

+

+

B +

D

Note: Operators can not be re-arranged if initial order
is overridden by use of parenthesis in HDL

Puneet Gupta (puneet@ee.ucla.edu)

High-Level Optimization 4 –
Common Sub Expression Sharing

SUM1 <= A + B + C
SUM2 <= A + B + D
SUM3 <= B + A + E

+

+

SUM1

A B C

+

+

A B D

+

+

B A E

+

A B

+

C

+

D

+

E

Sharing of Sub-
Expressions

Note: Order of within the Sub-Expressions is not important,
but the positions must be the same

SUM2 SUM3 SUM1 SUM2 SUM3

Puneet Gupta (puneet@ee.ucla.edu)

Basic Logic Model:
Finite State Machines

Puneet Gupta (puneet@ee.ucla.edu)

General Logic Structure

• Combinational optimization
– Keep latches/registers at current position, keep their function
– Optimize combinational logic in between

• Sequential optimization
– Change latch position/function

Puneet Gupta (puneet@ee.ucla.edu)

Optimization Cost Criteria

• Area occupied by the logic gates and interconnect
(approximated by literals = transistors in technology
independent optimization)

• Critical path delay of the longest path through the logic
• Power consumed by the logic gates
• Noise Immunity
• Routability
while simultaneously satisfying upper or lower bound
constraints placed on these physical quantities

Puneet Gupta (puneet@ee.ucla.edu)

Logic Optimization Methods
• Two-level logic optimization

– For sum-of-products (SOP)
implementation on PLAs, fewer
product terms and fewer inputs to each
product term mean smaller area.

– Karnaugh maps, Quine-McCluskey,
Espresso

– E.g., F1= AB + AC + AD; F2 =A’B +
A’C + A’E

• Multi-level logic
– E.g., P = B + C; F1 = AP + AD;

F2 = A'P + A'E  3 levels  logic
sharing  smaller area

– Difficult to optimize

I1
I2

O1

O2
O1 = I1 I2 + I1’ I2’
O2 = I1’ I2’

Puneet Gupta (puneet@ee.ucla.edu)

Boolean Functions

f(x) : Bn B
B = {0, 1}, x = (x1, x2, …, xn)

• x1, x2, … are variables
• x1, x1, x2, x2, … are literals
• each vertex of Bn is mapped to 0 or 1
• the onset of f is a set of input values for

which f(x) = 1
• the offset of f is a set of input values for

which f(x) = 0

Puneet Gupta (puneet@ee.ucla.edu)

Logic Functions:

Slide courtesy of Devadas, et. al

Puneet Gupta (puneet@ee.ucla.edu)

111011

110

100000

010

001 101

Cube Representation
• N-dimensional cube

– Marking top points in which function has individual values,
receive its geometrical representation, for example function
Y=V(3,4,5,6,7) is shown

• A SOP can be thought of as a set of cubes. A set of
cubes that represents f is called a cover of f.
– F={ab, ac, bc} is a cover of f = ab + ac + bc.

• Prime Cube (Prime Implicant): if there is no other cube
that contains it  removing a literal will make it
invalid
– E.g., b is prime but bc is not

• Prime Cover: if all contained cubes are prime

c

b

Puneet Gupta (puneet@ee.ucla.edu)

Irredundant Covers
• A cube c of a cover C is irredundant

if C fails to be a cover if c is
dropped from C

• A cover is irredundant (minimal) iff
all its cubes are irredundant (for
example, F = a b + a c + b c)

• Logic minimization:
– find a minimum prime and

irredundant cover for a given
function.

• Prime cover leads to min number
of inputs to each product term.

• Min irredundant cover leads to min
number of product terms.

c

ba
Not
covered

Puneet Gupta (puneet@ee.ucla.edu)

5 min break

	Lecture 3: Logic Synthesis
	Logistics
	RTL vs. Gate Level
	What is Logic Synthesis ?
	Typical Synthesis Scenario
	High Level Optimization 1: Resource Sharing
	Resource Sharing: Solving It
	High-Level Optimization 2: Implementation Selection
	High-Level Optimization 3 – Operator Re-ordering
	High-Level Optimization 4 – Common Sub Expression Sharing
	Basic Logic Model:�Finite State Machines
	General Logic Structure
	Optimization Cost Criteria
	Logic Optimization Methods
	Boolean Functions
	Logic Functions:
	Cube Representation
	Irredundant Covers
	5 min break

