Lecture 4: Logic Synthesis -2

ECE201A

Some notes adopted from
Andrew B. Kahng

Lei He

Igor Markov

Mani Srivastava
Synopsys

Various Sources

Logistics

* Students should help each other out on Piazzal

— DPlease feel free to answer simple tool questions

* I hope you have started on Lab 1

. LA
Quine-McCluskey Method

* We want to find a minimum prime and irredundant cover
for a given function.

— Prime cover leads to min number of inputs to each product
term.

— Min irredundant cover leads to min number of product terms.

* Quine-McCluskey (QM) method (1960’s) finds a

minimum prime and irredundant cover.

— Step 1: List all minterms of on-set: O(2"n) n = #Hinputs
— Step 2: Find all primes

— Step 3: Construct minterms vs primes table

— Step 4: Find a min set of primes that covers all the minterms:
O(2"m) m = #primes

Puneet Gupta (puneet@ee.ucla.edu)

QM Example (Step 1)
e F=2ab d+ab’c+tab’c+tabc+abc

e J.ist all on-set minterms

Minterms

abc ‘/ /
abc

ab' c

abc
abc

Puneet Gupta (puneet@ee.ucla.edu)

QM Example (Step 2)
e F=abc+ab’c+tab ct+tabc+a’bc

* Iind all primes.

primes |b’c’ |ab’ |ac |bc ‘/

s

&

QM Example (Step 3)
e F=2ab dc+ab d+ab’ct+tabct+abc
* Construct minterms vs primes table (prime implicant
table) by determining which cube is contained in

which prime. X at row 1, column j means that cube in
row 1 1s contained by prime in column j.

Puneet Gupta (puneet@ee.ucla.edu)

b’c’ |ab’ |ac bc
abc X
ab’ c X X
ab’c X X
abc X X
abc X

QM Example (Step 4)

e F=a’b’c+ab’'c+ab’c+abc+a’bc
e Find a minimum set of primes that covers all the minterms

“Minimum column covering problem”

b’c’ \|ab \|lac hc Z

abcl X | | ‘/ (//

ab’'c X X

ab’ c X X

abc | X X | /‘

a'bc J[X | 7 A

/ /

Essential primes

Puneet Gupta (puneet@ee.ucla.edu)

LA

How to find prime implicants ?

* For 3 input functions, you can visualize them in
a cube. What about more than 3 inputs ?

e E.go., f=m(0, 3,7, 12, 13, 14, 15) (4 inputs)

Puneet Gupta (puneet@ee.ucla.edu)

Heuristic Logic Minimization

* Provide irredundant covers with small sizes

— Much faster than exact minimization (e.g., Quine-McCluskey)

* Basic approach
— Start from 1nitial cover

— Modify cover under consideration =2 Size of the cover
decreases with each iteration

* Basic routines (Espresso)
— Expand: Make cubes prime; Remove covered cubes
— Reduce: Reduce size of each cube while preserving cover

— Irredundant: Make cover irredundant

Puneet Gupta (puneet@ee.ucla.edu)

LA
ESPRESSO ILLUSTRATED

é | ESPRESSO(F) {
Reduce N do {
/l‘ | /l reduce(F);
! expand(F);

irredundant(F);

4 /1 21 pa
7X 75) } while (fewer
| + = | /l ;‘erms in F);
oany oan

Puneet Gupta (puneet@ee.ucla.edu)

puedxJ |

LA

Representation: Boolean Network

z1
OUTPUTS Zp
. . A AL A
. directed acyclic graph (DAG)
. node logic function representation
Ly~ f(x.y) Y,
if f; depends explicitly on Nodej ¥ = f(w ¥ ..)

Yi / BOOLEAN
NETWORK
Inputs x = (x4, X,,...,X,) y;

Outputs z = (z,, z,,...,z,)

INPUTS

Puneet Gupta (puneet@ee.ucla.edu) Slide courtesy of Brayton

Node Representation: Sum of LA
Products (SOP)

* Example: abc’+a’bd+b’d’+b’e’f (sum of cubes)
* Advantages:

— easy to manipulate and minimize
— many algorithms available (e.g. QM)
— two-level theory applies

* Disadvantages:

— Not representative of logic complexity. For example
f=ad+ae+bd+be+tcd+ce f=a’b’c’+d’¢’

* These differ in their implementation by an inverter.

— hence not easy to estimate logic; difficult to estimate progress
during logic manipulation

Puneet Gupta (puneet@ee.ucla.edu)

Factored Forms

* Example: (ad+b’c)(c+d’(e+ac’))+(d+e)tg
* Advantages

— good representative of logic complexity
f=ad+ae+bd+be+cd+ce P=a’b’c’+d’e’ =2

f=(a+b+c)(d+e)
— 1n many designs (e.g. complex gate CMOS) the

implementation of a function corresponds directly to its
factored form (standard cells)

— good estimator of logic implementation complexity

* Disadvantages
— not as many algorithms available for manipulation

— hence usually just convert into SOP before manipulation
Puneet Gupta (puneet@ee.ucla.edu)

Factored Forms

Factored forms can be graphically represented as labeled , called
factoring trees, in which each internal node including the root is labeled

with either + or x, and each leaf has a label of either a variable or its
complement.

factoring tree of ((a’+b)cd+e)(a+b’)+e’

((@’+b)cd+e)(a+b’)+e’

Puneet Gupta (puneet@ee.ucla.edu)

LA

Binary Decision Diagrams
* A Binary Decision Diagram (BDD) is a directed acyclic graph

1. Each vertex represents a decision on a variable
2. The value of the function is found at the leaves

3. Each path from root to leaf corresponds to a row in the truth table

— Many logic functions can be represented compactly - usually better than SOP’s

f(X;XoX3) Root node

s
X

[\
x

W

1] O Lo G

(X1, X535 X3) = ~X~X~X3 + ~X ~X;y + ~X 1 X5~X; + X X;~X;

= A2 2] O]l OO]O | ©O
=S 2Ol 0O~~~ 10O | O
~lO|=~~|]O|—~|]OC|—~]|0O
O|l -~ | O | O |O| A=

Puneet Gupta (puneet@ee.ucla.edu)

ROBDDs — Reduced Ordered BDDs LA

* ROBDD:
— Directed acyclic graph (DAG)
— one root node, two terminals 0, 1

— each node, two children, and a variable

— Reduced:

" any node with two identical children is removed

" two nodes with isomorphic BDD’s are merged

" Ordered:

— Splitting variables always follow the same order along all paths

Q f(x,X,,X3)

f(X4, X2,X3) = ~X4~X; + ~X 1 X;~X3 + X4 X;~X;3

Puneet Gupta (puneet@ee.ucla.edu)

Ordered vs. Not

* Size of BDD critically dependent on variable ordering

— for a good ordering, BDDs remain reasonably small for complicated
functions

« ROBDD is canonical given a variable ordering = a good
replacement for truth tables

Not
ordered

Puneet Gupta (puneet@ee.ucla.edu)

5 min break

Technology-Independent LA

Optimization: Bag of Tricks

Two-level minimization (also called simplify)
— Use heuristic minimizer like Espresso

n=qgc+ g’ +tqgAu=q+g

Constant propagation (also called sweep)

— Boolean minimization may lead to dissolution of certain section of code
into constants

f=ab+cb =1=>f=a+c

Collapsing (also called elimination)

— Eliminate one function from the network
f=gatgh g=ctd
U
f=actad+bed’

Factoring (series-parallel decomposition)
f: act+ad+be+bd+e :>f: (ﬂ+b)(€+d)+e

Puneet Gupta (puneet@ee.ucla.edu)

More Technology-Independent LA
Optimization

* Decomposition (single function)

— Break a function into smaller ones
f=abetabdta’cd+be'd =>f=xy+x%; x=ab; y=ctd

* Extraction (multiple functions)

— TFind a common sub-expression of two (or more) expressions
= (aztb)ed+e g = (az+bg)e’ b= cde
U

f=xyte g=xe’ h=ye x=az+by’ y=cd
* Substitution

— Simplify a local function by using an additional input (that already exists

in the network elsewhere)
g=atb f=atbe

U
S =glatd)

LA

Boolean vs. Algebraic Manipulation

* Boolean methods for multilevel synthesis
— Exploit properties of Boolean functions (e.g., aa’ = 0)
— Use don’t care conditions

— Computationally intensive

* Algebraic methods
— Use polynomial abstraction of logic function

— Simpler, faster, weaker

— Widely used

* Example: Boolean vs. Algebaric factoring

Considerf=ab’+ac+ba’+bc+ca’+cb’
e Algebraic: f=a® +c)+a’(b+c)+bc+cb’
* Boolean: f=(@a+b+c)@@+b +¢)

Logical Equivalence Checking Using LA
BDDs

a_. - ﬁ%
b — — Z —> Z
b >

— Logical equivalence checking (i.e., checking if two netlists are implementing the
same function)

* Very useful to compare RTL to gate-level netlist or compare gate-level netlists pre
and post layout

— It 1is just graph isomorphism check on the corresponding canonical ROBDDs

* Graph isomorphism: Two graphs which contain the same number of graph vertices
connected in the same way are said to be isomorphic

* E.g, Left circuit above 1s a OR b. Right one is MUX(a, b, a). Draw the ROBDD
for MUX and OR and check if they are “same”.

Puneet Gupta (puneet@ee.ucla.edu)

Input

Technology Mapping

— Technology independent, optimized logic network

Description of the gates in the library with their cost

Output

Netlist of gates (from library) which minimizes total cost

General Approach

Construct a subject DAG for the network
Represent each gate in the target library by pattern DAG’s

Find an optimal-cost covering of subject DAG using the
collection of pattern DAG’s

Canonical form: 2-input NAND gates and inverters

Puneet Gupta (puneet@ee.ucla.edu)

DAG Covering
* DAG covering i1s an NP-hard problem

* Solve the sub-problem optimally

— Partition DAG into a forest of trees
* Break at every node with fanout > 1

each tree optimally using dynamic programming

— Stitch trees back together

A

Q Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

LA

Tree Covering Algorithm
e Transform netlist and libraries into canonical forms

— 2-input NANDs and inverters

* Visit each node in BES from inputs to outputs

— Find all candidate matches at each node N

* Match 1s found by comparing topology only (no need to compare
functions)

— Find the optimal match at N by computing the new cost

e New cost = cost of match at node N + sum of costs for matches at

children of N

— Store the optimal match at node N with cost
* Optimal solution 1s guaranteed if cost is area

* Complexity = O(n) where n 1s the number of nodes in
netlist

Puneet Gupta (puneet@ee.ucla.edu)

Tree Covering Example LA

Find an ““optimal” (in area, delay, power) mapping of this circuit
o [

:}DO'_LT:

B

into the technology library (simple example below)
> I 1 D D B

Puneet Gupta (puneet@ee.ucla.edu) Slide courtesy of Keutzer

Elements of a library -1 LA

Element/Area Cost Tree Representation (normal form)

INVERTER 2 —>o
1 > 4 »

> L Doy,
D,

NAND2 3

NAND3 /.

NAND4 S

}D‘)_L_DO

Trivial Covering

: subject DAG
3}}1:3 Do
Do Pk
IS D
7 NAND2 (3) = 21
5 INV (2)= 10

Area cost 31

Can we do better with tree covering?

Puneet Gupta (puneet@ee.ucla.edu) Slide courtesy of Keutzer

Optimal tree covering - 1

e
7
?
;

ok
Y
L

B

“"subject tree”

Optimal tree covering - 2 LA

3

> '
% P
2 —>o- -}M%
2 [
A" >o—
-LDC “"subject tree”

B

&)

Optimal tree covering - 3 LA

B

T > e
2 _D@F_l- }_D‘)_LD)
Do

S}

Ty

= “"subject tree”

Cover with ND2 or ND3 ?

1 NAND2 3 1 NAND3 =4
+ subtree 5

Area cost 8

Optimal tree covering — 3b LA

ZDo—l:):_l 13
2 —DO'— T }_DO_ED)—DO—
1o

B

5 4

3’7{>C_D:

“"subject tree”

Label the root of the sub-tree with optimal match and cost

Puneet Gupta (puneet@ee.ucla.edu) Slide courtesy of Keutzer

Optimal tree covering - 4 LA

Cover with INV or AO21 ?
1 Dk > | 13 :—)DO
T L
2 I 5

2 i >
Do—_
2 5 > . “"subject tree”
1 AO21 4
+ subtree 1 3
1 Inverter 2 + subtree 2 2

+ subtree 13

Area cost 15 Area cost 9

Optimal tree covering — 4b LA

B

N
]

5 “"subject tree”

Label the root of the sub-tree with optimal match and cost

Zoom poll: What is the next set of choices ?

Puneet Gupta (puneet@ee.ucla.edu) Slide courtesy of Keutzer

Optimal tree covering - 5 LA

g Cover with ND2 or ND3 ?

Do

L —U—

—DO' 1)j—[)o—_

T Do
> . “"subject tree”

subtree 1 9 subtree 1 8

NAND2 ¢ ptree 2 4 subtree 2 2 NAND3
INANDZ 3 SR

Area cost 16 Area cost 18

Optimal tree covering — 5b LA

. 8 16
P T
D
o
Do
-LDC . “"subject tree”

Label the root of the sub-tree with optimal match and cost

Optimal tree covering - 6 LA

Cover with INV or AOI21 ?

1)k 5, 13 ‘ QD
T
kot
S T
16 1 p—
| Do
|
‘ Do—_ |
5 : | ““subject tree”
subtree 1 13
INy ~ Subtree 1 16 AOI21 subtree 2 5
TINV 2 1 AOI21 4

Area cost 18

Area cost 22

Optimal tree covering — 6b LA

-) .
P e

U
Y

Be

16

o
|
=

Do
> “"subject tree”

Label the root of the sub-tree with optimal match and cost

Optimal tree covering - 7 LA

Cover with ND2 or ND3 or ND4 ?

> “"subject tree”

Cover 1 - NAND?2 LA

Cover with ND2 ?

18

16 1] b
| Do
1 o
> . “"subject tree”
subtree 1 18
subtree 2 0
1 NAND2 3

Area cost 21

Cover 2 - NAND3 LA

Cover with ND3?

| Do
1 o
> . “"subject tree”
subtree 1 9
subtree 2 4
subtree 3 0
1 NAND3 4

Area cost 17

Cover -3 LA

Cover with ND4 ?

> “"subject tree”
subtree 1 8
subtree 2 2
subtree 3 4
subtree 4 0
1 NAND4 i Area cost 19

Optimal Cover was Cover 2 LA

ND2

- AOI21

L >») ND3

INV | Do 1 D> oo
1 >
| Do
ND3 > “"subject tree”

INV 2
ND2 3
2 ND3 8
AOI21 4

Area cost 17

LA

Example Sequential Optimizations

— split combinational logic into multiple

cycles 2improve clock frequency, _,l_,|:|_,._,|:
throughput

— worsen latency (overhead of registers)

* Pipelining _’\._’I:I_’ \

* Retiming

— optimally distributing registers

throughout a circuit - improve clock w

frequency

— Reduce number of registers . I:I . I:I

Retiming
* Shortening critical paths

a b QfF
Al

y
y

T o b

b —b Q—J
YA

* Create simplification opportunities
a b Q | a P Q
b —= § ——7) > b -
D Q D Q
A Y AL
I c =1
o

D

A

e How?:

— Move register(s) from input to outputs or vice-versa

A = e

	Lecture 4: Logic Synthesis -2
	Logistics
	Quine-McCluskey Method
	QM Example (Step 1)
	QM Example (Step 2)
	QM Example (Step 3)
	QM Example (Step 4)
	How to find prime implicants ?
	Heuristic Logic Minimization
	ESPRESSO ILLUSTRATED
	Representation: Boolean Network
	Node Representation: Sum of Products (SOP)
	Factored Forms
	Factored Forms
	Binary Decision Diagrams
	ROBDDs – Reduced Ordered BDDs
	Ordered vs. Not
	5 min break
	Technology-Independent Optimization: Bag of Tricks
	More Technology-Independent Optimization
	Boolean vs. Algebraic Manipulation
	Logical Equivalence Checking Using BDDs
	Technology Mapping
	DAG Covering
	Tree Covering Algorithm
	Tree Covering Example
	Elements of a library - 1
	 Trivial Covering
	Optimal tree covering - 1
	Optimal tree covering - 2
	Optimal tree covering - 3
	Optimal tree covering – 3b
	Optimal tree covering - 4
	Optimal tree covering – 4b
	Optimal tree covering - 5
	Optimal tree covering – 5b
	Optimal tree covering - 6
	Optimal tree covering – 6b
	Optimal tree covering - 7
	Cover 1 - NAND2
	Cover 2 - NAND3
	Cover - 3
	Optimal Cover was Cover 2
	Example Sequential Optimizations
	Retiming

