
Puneet Gupta (puneet@ee.ucla.edu)

Lecture 4: Logic Synthesis -2

ECE201A
Some notes adopted from
Andrew B. Kahng
Lei He
Igor Markov
Mani Srivastava
Synopsys
Various Sources

Puneet Gupta (puneet@ee.ucla.edu)

Logistics

• Students should help each other out on Piazza!
– Please feel free to answer simple tool questions

• I hope you have started on Lab 1

Puneet Gupta (puneet@ee.ucla.edu)

Quine-McCluskey Method
• We want to find a minimum prime and irredundant cover

for a given function.
– Prime cover leads to min number of inputs to each product

term.
– Min irredundant cover leads to min number of product terms.

• Quine-McCluskey (QM) method (1960’s) finds a
minimum prime and irredundant cover.
– Step 1: List all minterms of on-set: O(2^n) n = #inputs
– Step 2: Find all primes
– Step 3: Construct minterms vs primes table
– Step 4: Find a min set of primes that covers all the minterms:

O(2^m) m = #primes

Puneet Gupta (puneet@ee.ucla.edu)

QM Example (Step 1)
• F = a’ b’ c’ + a b’ c’ + a b’ c + a b c + a’ b c
• List all on-set minterms

Minterms
a’ b’ c’
a b’ c’
a b’ c
a b c
a’ b c

Puneet Gupta (puneet@ee.ucla.edu)

QM Example (Step 2)
• F = a’ b’ c’ + a b’ c’ + a b’ c + a b c + a’ b c
• Find all primes.

primes b’ c’ a b’ a c b c

Puneet Gupta (puneet@ee.ucla.edu)

QM Example (Step 3)
• F = a’ b’ c’ + a b’ c’ + a b’ c + a b c + a’ b c
• Construct minterms vs primes table (prime implicant

table) by determining which cube is contained in
which prime. X at row i, column j means that cube in
row i is contained by prime in column j.

b’ c’ a b’ a c b c

a’ b’ c’ X
a b’ c’ X X
a b’ c X X
a b c X X
a’ b c X

Puneet Gupta (puneet@ee.ucla.edu)

QM Example (Step 4)
• F = a’ b’ c’ + a b’ c’ + a b’ c + a b c + a’ b c
• Find a minimum set of primes that covers all the minterms

“Minimum column covering problem”

b’ c’ a b’ a c b c

a’ b’ c’ X
a b’ c’ X X
a b’ c X X
a b c X X
a’ b c X

Essential primes

Puneet Gupta (puneet@ee.ucla.edu)

How to find prime implicants ?

• For 3 input functions, you can visualize them in
a cube. What about more than 3 inputs ?

• E.g., f = m(0, 3, 7, 12, 13, 14, 15) (4 inputs)

Puneet Gupta (puneet@ee.ucla.edu)

Heuristic Logic Minimization
• Provide irredundant covers with small sizes

– Much faster than exact minimization (e.g., Quine-McCluskey)

• Basic approach
– Start from initial cover
– Modify cover under consideration Size of the cover

decreases with each iteration

• Basic routines (Espresso)
– Expand: Make cubes prime; Remove covered cubes
– Reduce: Reduce size of each cube while preserving cover
– Irredundant: Make cover irredundant

Puneet Gupta (puneet@ee.ucla.edu)

ESPRESSO ILLUSTRATED

Reduce

Irredundant

Expand

ESPRESSO(F) {
 do {
 reduce(F);
 expand(F);

irredundant(F);
 } while (fewer
terms in F);
}

Puneet Gupta (puneet@ee.ucla.edu)

Representation: Boolean Network
Boolean network:

• directed acyclic graph (DAG)
• node logic function representation

fj(x,y)
• node variable yj: yj= fj(x,y)
• edge (i,j) if fj depends explicitly on

yi

Inputs x = (x1, x2,…,xn)

Outputs z = (z1, z2,…,zp)

Slide courtesy of Brayton

Puneet Gupta (puneet@ee.ucla.edu)

Node Representation: Sum of
Products (SOP)

• Example: abc’+a’bd+b’d’+b’e’f (sum of cubes)
• Advantages:

– easy to manipulate and minimize
– many algorithms available (e.g. QM)
– two-level theory applies

• Disadvantages:
– Not representative of logic complexity. For example

f=ad+ae+bd+be+cd+ce f’=a’b’c’+d’e’
• These differ in their implementation by an inverter.

– hence not easy to estimate logic; difficult to estimate progress
during logic manipulation

Puneet Gupta (puneet@ee.ucla.edu)

Factored Forms

• Example: (ad+b’c)(c+d’(e+ac’))+(d+e)fg
• Advantages

– good representative of logic complexity
f=ad+ae+bd+be+cd+ce f’=a’b’c’+d’e’

f=(a+b+c)(d+e)
– in many designs (e.g. complex gate CMOS) the

implementation of a function corresponds directly to its
factored form (standard cells)

– good estimator of logic implementation complexity

• Disadvantages
– not as many algorithms available for manipulation
– hence usually just convert into SOP before manipulation

Puneet Gupta (puneet@ee.ucla.edu)

Factored Forms
Factored forms can be graphically represented as labeled trees, called
factoring trees, in which each internal node including the root is labeled
with either + or ×, and each leaf has a label of either a variable or its
complement.

Example: factoring tree of ((a’+b)cd+e)(a+b’)+e’

Puneet Gupta (puneet@ee.ucla.edu)

x1 x2 x3 f(x1x2x3)

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

0 1

1 0

0 1 0 1

0 1 0

x1

x2 x2

x3 x3

f(x1,x2,x3)
Root node

~(x2x3) x2 ~x3

~x3
~x3x3 x3

11 010 0
100 1

f(x1, x2, x3) = ~x1~x2~x3 + ~x1~x2 + ~x1x2~x3 + x1x2~x3

1

Binary Decision Diagrams
• A Binary Decision Diagram (BDD) is a directed acyclic graph

1. Each vertex represents a decision on a variable
2. The value of the function is found at the leaves
3. Each path from root to leaf corresponds to a row in the truth table

– Many logic functions can be represented compactly - usually better than SOP’s

Puneet Gupta (puneet@ee.ucla.edu)

1

x1

x2 x2

x3 x3

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3 ~x3x3 x3

0 1

x1

x2 x2

f(x1,x2,x3)

~(x2x3) x2 ~x3

~x3
x3

0

f(x1, x2,x3) = ~x1~x2 + ~x1x2~x3 + x1x2~x3

ROBDDs – Reduced Ordered BDDs
• ROBDD:

– Directed acyclic graph (DAG)
– one root node, two terminals 0, 1
– each node, two children, and a variable
– Reduced:

 any node with two identical children is removed
 two nodes with isomorphic BDD’s are merged

 Ordered:
– Splitting variables always follow the same order along all paths

Puneet Gupta (puneet@ee.ucla.edu)

a

c c

b

0 1

Ordered
order – a,c,b a

b c

c

1

b

0

Not
ordered

Ordered vs. Not
• Size of BDD critically dependent on variable ordering

– for a good ordering, BDDs remain reasonably small for complicated
functions

• ROBDD is canonical given a variable ordering a good
replacement for truth tables

Puneet Gupta (puneet@ee.ucla.edu)

5 min break

Puneet Gupta (puneet@ee.ucla.edu)

Technology-Independent
Optimization: Bag of Tricks

• Two-level minimization (also called simplify)
– Use heuristic minimizer like Espresso
u = q’c + qc’ + qc u = q + c;

• Constant propagation (also called sweep)
– Boolean minimization may lead to dissolution of certain section of code

into constants
f = a b + c; b = 1 => f = a + c

• Collapsing (also called elimination)
– Eliminate one function from the network

f = ga+g’b g = c+d
⇓

f = ac+ad+bc’d’

• Factoring (series-parallel decomposition)
f = ac+ad+bc+bd+e => f = (a+b)(c+d)+e

Puneet Gupta (puneet@ee.ucla.edu)

More Technology-Independent
Optimization

• Decomposition (single function)
– Break a function into smaller ones

f = abc+abd+a’c’d’+b’c’d’ => f = xy + x’y’; x = ab ; y = c+d

• Extraction (multiple functions)
– Find a common sub-expression of two (or more) expressions

f = (az+bz’)cd+e g = (az+bz’)e’ h = cde
⇓

f = xy+e g = xe’ h = ye x = az+bz’ y = cd

• Substitution
– Simplify a local function by using an additional input (that already exists

in the network elsewhere)
g = a+b f = a+bc

⇓
f = g(a+c)

Puneet Gupta (puneet@ee.ucla.edu)

Boolean vs. Algebraic Manipulation

• Boolean methods for multilevel synthesis
– Exploit properties of Boolean functions (e.g., a a’ = 0)
– Use don’t care conditions
– Computationally intensive

• Algebraic methods
– Use polynomial abstraction of logic function
– Simpler, faster, weaker
– Widely used

• Example: Boolean vs. Algebaric factoring
Consider f = a b’ + a c’ + b a’ + b c’ + c a’ + c b’
• Algebraic: f = a (b’ + c’) + a’ (b + c) + b c’ + c b’

• Boolean: f = (a + b + c) (a’ + b’ + c’)

Puneet Gupta (puneet@ee.ucla.edu)

Logical Equivalence Checking Using
BDDs

– Logical equivalence checking (i.e., checking if two netlists are implementing the
same function)

• Very useful to compare RTL to gate-level netlist or compare gate-level netlists pre
and post layout

– It is just graph isomorphism check on the corresponding canonical ROBDDs
• Graph isomorphism: Two graphs which contain the same number of graph vertices

connected in the same way are said to be isomorphic
• E.g., Left circuit above is a OR b. Right one is MUX(a, b, a). Draw the ROBDD

for MUX and OR and check if they are “same”.

a
b z a

b
z

Puneet Gupta (puneet@ee.ucla.edu)

Technology Mapping

Input
– Technology independent, optimized logic network
– Description of the gates in the library with their cost

Output
– Netlist of gates (from library) which minimizes total cost

General Approach
– Construct a subject DAG for the network
– Represent each gate in the target library by pattern DAG’s
– Find an optimal-cost covering of subject DAG using the

collection of pattern DAG’s
– Canonical form: 2-input NAND gates and inverters

Puneet Gupta (puneet@ee.ucla.edu)

DAG Covering
• DAG covering is an NP-hard problem
• Solve the sub-problem optimally

– Partition DAG into a forest of trees
• Break at every node with fanout > 1

– Cover each tree optimally using dynamic programming
– Stitch trees back together

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Tree Covering Algorithm
• Transform netlist and libraries into canonical forms

– 2-input NANDs and inverters

• Visit each node in BFS from inputs to outputs
– Find all candidate matches at each node N

• Match is found by comparing topology only (no need to compare
functions)

– Find the optimal match at N by computing the new cost
• New cost = cost of match at node N + sum of costs for matches at

children of N

– Store the optimal match at node N with cost

• Optimal solution is guaranteed if cost is area
• Complexity = O(n) where n is the number of nodes in

netlist

Puneet Gupta (puneet@ee.ucla.edu)

Tree Covering Example

into the technology library (simple example below)

Find an ``optimal’’ (in area, delay, power) mapping of this circuit

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Elements of a library - 1

INVERTER 2

NAND2 3

NAND3 4

NAND4 5

Element/Area Cost Tree Representation (normal form)

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Trivial Covering
subject DAG

7 NAND2 (3) = 21
5 INV (2) = 10

Area cost 31

Slide courtesy of Keutzer

Can we do better with tree covering?

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering - 1

``subject tree’’

3

2

2

3

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering - 2

``subject tree’’

5

8
3

2

2

3

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering - 3

``subject tree’’

Cover with ND2 or ND3 ?

3

2

2

3

8
13

5

1 NAND2 3
+ subtree 5

1 NAND3 = 4

Area cost 8
Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering – 3b

``subject tree’’

3

2

2

3

8
13

5 4

Label the root of the sub-tree with optimal match and cost

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering - 4

``subject tree’’

Cover with INV or AO21 ?

5
4

3

8

2

2

13

2

1 Inverter 2
+ subtree 13

Area cost 15

1 AO21 4
+ subtree 1 3
+ subtree 2 2

Area cost 9
Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering – 4b

``subject tree’’5
4

3

8

2

2

13

2

9

Label the root of the sub-tree with optimal match and cost

Zoom poll: What is the next set of choices ?

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering - 5

``subject tree’’

Cover with ND2 or ND3 ?

subtree 1 9
subtree 2 4
1 NAND2 3

Area cost 16

NAND2 NAND3

8

4

9

subtree 1 8
subtree 2 2
subtree 3 4
1 NAND3 4

Area cost 18

2

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering – 5b

``subject tree’’

168

4

9

2

Label the root of the sub-tree with optimal match and cost

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering - 6

``subject tree’’

Cover with INV or AOI21 ?

INV AOI21

Area cost 22

5

16

Area cost 18

subtree 1 16
1 INV 2

subtree 1 13
subtree 2 5
1 AOI21 4

13

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering – 6b

``subject tree’’5

16

18
13

Label the root of the sub-tree with optimal match and cost

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal tree covering - 7

``subject tree’’

Cover with ND2 or ND3 or ND4 ?

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Cover 1 - NAND2

``subject tree’’

Cover with ND2 ?

16

18

subtree 1 18
subtree 2 0
1 NAND2 3

Area cost 21

4

9

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Cover 2 - NAND3

``subject tree’’

Cover with ND3?

subtree 1 9
subtree 2 4
subtree 3 0
1 NAND3 4

Area cost 17

9

4

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Cover - 3

``subject tree’’

Cover with ND4 ?

Area cost 19

subtree 1 8
subtree 2 2
subtree 3 4
subtree 4 0
1 NAND4 5

8

4

2

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Optimal Cover was Cover 2

``subject tree’’

INV 2
ND2 3
2 ND3 8
AOI21 4

Area cost 17

AOI21
ND2

INV

ND3

ND3

Slide courtesy of Keutzer

Puneet Gupta (puneet@ee.ucla.edu)

Example Sequential Optimizations

• Pipelining
– split combinational logic into multiple

cycles improve clock frequency,
throughput

– worsen latency (overhead of registers)

• Retiming
– optimally distributing registers

throughout a circuit improve clock
frequency

– Reduce number of registers

Puneet Gupta (puneet@ee.ucla.edu)

a
b

c
d

xD Q
a

b d
x

D Q

D Q

a
b x

c

D Q

D Q

D Q

x

c

a

b

D Q

D Q

Retiming
• Shortening critical paths

• Create simplification opportunities

• How?:
– Move register(s) from input to outputs or vice-versa

	Lecture 4: Logic Synthesis -2
	Logistics
	Quine-McCluskey Method
	QM Example (Step 1)
	QM Example (Step 2)
	QM Example (Step 3)
	QM Example (Step 4)
	How to find prime implicants ?
	Heuristic Logic Minimization
	ESPRESSO ILLUSTRATED
	Representation: Boolean Network
	Node Representation: Sum of Products (SOP)
	Factored Forms
	Factored Forms
	Binary Decision Diagrams
	ROBDDs – Reduced Ordered BDDs
	Ordered vs. Not
	5 min break
	Technology-Independent Optimization: Bag of Tricks
	More Technology-Independent Optimization
	Boolean vs. Algebraic Manipulation
	Logical Equivalence Checking Using BDDs
	Technology Mapping
	DAG Covering
	Tree Covering Algorithm
	Tree Covering Example
	Elements of a library - 1
	 Trivial Covering
	Optimal tree covering - 1
	Optimal tree covering - 2
	Optimal tree covering - 3
	Optimal tree covering – 3b
	Optimal tree covering - 4
	Optimal tree covering – 4b
	Optimal tree covering - 5
	Optimal tree covering – 5b
	Optimal tree covering - 6
	Optimal tree covering – 6b
	Optimal tree covering - 7
	Cover 1 - NAND2
	Cover 2 - NAND3
	Cover - 3
	Optimal Cover was Cover 2
	Example Sequential Optimizations
	Retiming

