Static Timing Analysis (STA)

Some contributions from
Lei He

Andrew B. Kahng

|lgor Markov

Mohammad Tehranipoor

Logistics

* Lab 2 1s assigned.

— 'The course will be zery fast paced.

* We will have labs every week

— Lab 4 1s critical to prepare for the Final Project

* Final Project vO should be assigned in Week 5/6.

— Midterm project report due in Week 8

* Quiz 1, Feb 8 in class at beginning of class

— Second half of class: Cadence Innovus Tutorial

e No Office hours for me on Feb 7.

— Please email me with any questions not answered on Piazza or if you want
to have a zoom call for something.

Puneet Gupta (puneetg@ucla.edu)

Let’s Revisit Cycle Time and Path Delay | A

* Cycle time (T) cannot be
smaller than longest path cycle time

delay (T,,,,) data QX YOOI XXX

* Longest (critical) path Tetock Y

delay is a function of: T <T
* Total gate, wire delays

— logic levels

Q1 =)L Q2
T critical path,f B
clockd ~5 logic levels Toiock2
clock

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time - Setup Time

* TFor FFs to correctly

capture data at inputs, setup time
must be stable for: data XXXX
* Setup time (Tsetup) before Totock

clock arrives
Tmax + Tsetup < T

>

Q1 Q2

T critical path,f B
clock ~5 logic levels Toiock2

|
clock

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time — Clock Skew

" |f clock network has data XX XXXX

unbalanced delay — clock =
Skew {T—_/—_

QR —

clock skew

" Cycle time is also a function
of clock skew (T.,)

Tmax + Tsetup * Tskew < T

}[>o_
l Q1 :D_ED—S'\ 3 l Q2
critical p?ajth

~5 logic levels

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time — Flip-Flop Delay (Clock to Q) LA

® Cycle time is also a

function of propagation

delay of FF (T, ,,, ot

Tch)

* T

c2q

. time from arrival of

data

T

clock2

Q2

clock signal till change at

FEF output)

Q1 =g

— =

JAN

T

clock1

mp

XXX XXX

A

Toockt _ S\ S\ S

P
clock-to-Q

Tmax + Tsetup + Tskew *+ Tclk—to—Q < T

37

3‘53—9

_J
critical path,

f_

~5 logic levels

}_l—c

Q2

clock

Puneet Gupta (puneetg@ucla.edu)

Courtesy K. Keutzer et al. UCB

T

clock2

Min Path Delay - Hold Time

* For FI's to correctly hold time
latch data, data must data (X XXXX
be stable during: Tolock1 [/
* Hold time (T,) after clock
arrives Tmin 2 Thold * Tskew

* Determined by delay of shortest
path in circuit (T,) and clock

SkﬁW (Tskew>): D o
Q1 =3[, / Q2

short path, ~3
Totock1 logic levels Telocke

|
clock

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

LA

Setup, Hold, Cycle Times

cycle time
< >
hold time —
<« D stable
after clock

set-up time — D stable
before clock

When signal
may change

Example of a single phase clock

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Summary of Constraints (Edge- | /LA
Triggered FFs)

> doj4dii4

* Max(t,y) <t — Coerup — &

period setup c2q t

skew

— Delay is too long for data to be captured
© Min(t,y) > tog-t
— Delay 1s too short and data can race through, skipping a state

+t

c2q “skew

Example of t Violation 1 A

pdmax

* Suppose there is skew between the registers in a datatlow

(regA after regB)
* 917 gets its input values from regA at transition in Ck’
* CL output “o” arrives after Ck transition due to skew

* To correct this problem, can zncrease cycle time

Ck

qba.

Ck Joo late!

CK O 4

Courtesy K. Yang, UCLA
Puneet Gupta (puneetg@ucﬁ’a.edu) 5(

Example of t 4., Violation: Race
Through

* Suppose clock skew causes regA to be clocked before regB
* ‘1" passes through the CL with little delay (tpdmin)

* “0” arrives before the rising Ck’ causes the data to be latched.

 Cannot be fixed by changing frequency =2 have rock instead of chip

Ck Ck’

Courtesy K. Yang, UCLA

Puneet Gupta (puneetg@ucla.edu)

LA
Timing Analysis for Digital Chips

* Need to figure out how fast the chip runs
— Setup and hold checks

* Need to be able to analyze 1M+ gate design in seconds
to minutes

— Since will need to fioure out how fast the chip runs many
times during circuit optimizations

* Don’t necessarily need to know if the chip 1s
implementing the correct function at the same time

— That can be verified separately

Puneet Gupta (puneetg@ucla.edu)

Why “Static”

* Dynamic timing analysis: input vector dependent
— E.g., SPICE circuit simulation, Verilog simulation with timing
— Accurate but..

— Impractical for chips with 100s of inputs

* Static timing analysis: smart way of worst-casing vectors

— No input vectors required

* Modern timers take a lot of vector like hints

— Tends to be pessimistic (though not always)

Puneet Gupta (puneetg@ucla.edu)

Approach — Reduce to Combinational LA

ombinationa

ombinationa ombinationa

logic

original circuit

Combinational

logic

extracted block

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

LA
Gate Delay Models

* Delay is a function of fanout/slew

— Table based i'/_ \ R

— Wire load is not just capacitance: wires — _| qate /Cell —WA—
have resistance! = common way is to ,IC 1\(72

. . , I
use a “Effective Capacitance” model

BN

—| Gate /Cell

us
* Input pins are different iceﬁ‘

5 ¥V =logic “I”

s
na-nd (A,B)

A=3 A=3.2 A— |
> B e
|© 0V =logic*0"

Interconnect Delay Model

* Interconnect delay becomes a dominant portion of total delay
* Lumped RC model

in out

e Distributed RC tree

* For our purpose, we assume point-to-point wiring delays are pre-
characterized as cell delays

— Different interconnect have different delays
— Example: Elmore Delay Model, AWE, etc (EE201C covers this)

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 1 LA

e Use a labeled 0 X
directed graph

e (G =<I,E>

o [Vertices represent
gates, primary
inputs and primary

Outputs 1 Note: This is a simplistic view of the
timi h! Areal timi h will (at
* Fdges represent l0a51) vt veriax for 6ach mputor
. output pin of each gate, and will also
WITrEeS A distinguish rise and fall delays.
X
* [abels represent O

\O/sz

- Y

0
delays C o 1 : \25 s
* W —0 f
2
1

B

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 2 LA

* Use alabeled directed graph
c G=<VE>

o Fond the circuit maximum

delay

* Enumerate all paths - choose
the longest?

— How many paths in this

simple graph ?
o)N
V"N T i " ¥ sy
() D ¢)) coe)
R B N . B N B N ~ S

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Block Based STA LA

* Arrival times (AT) at a node
— Time when signal arrives at the node
— Latest time signal can become stable

— Determined by longest path from source

X

AX) @ dy_.
\. AlL)
—

7/

A(Y) ./;‘T’%E

Y

A(v) = A d
(V) UEF?UJ((u)+dy_q)

Problem Formulation - 3 LA

OOAL) < (2Kirkpatrick 1966, IBM JRD)
0 / c’ 1 M O .
o= W +«O f
Origin E)O 5 =7 2 ’
| Y

Compute longest path in a graph G = <V, E,delay, Origin>
/ delay is set of labels, Otigin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w>from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
W

if all incoming edges of whave been traversed, add wto

;
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

0 A
O- 0 *
1 2
0 c! 1 M>2® 15 0
—(O= W -« f
Origin 0 ? —~~ > 2 g
B | v

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
if all incoming edges of w have been traversed, add wto W
}
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

o A
O-— 0 2

0 c' 4£1>/£> S 2 8
0 - 5 '
O= W

Origin ? —~~ > 2 g
%O 1 y “?

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
if all incoming edges of w have been traversed, add wto W
}
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

o A
O- 0 *
0 c' 4£1>/£> S 2 8
0 - 5 '
O O= v
Origin 0 ? —~~ > 2 g
B | v

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add wto W

}
Longest path(G){

Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

OOA . _
0 oCY M 2o s 0
O = W -~ f
Origin 0 2 % 2 :
BO 1 y o c

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
if all incoming edges of w have been traversed, add wto W
}
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

A
O v *)
0 c' 1 ,%)/Q 2 s
- 5 |
O O= W
Origin ? —~~ > 2 g
O 1 Y “

B

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add wto W

}
Longest path(G){

Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

A
O v *)
0 c' 1 ,%)/Q 2o s
- 5 |
@ O W
Origin 2 =0~ 2 g
O 1 Y 2

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add wto W

}
Longest path(G){

Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

A
O v *)
0 c' 1 ,%)/Q 2o s
- 5 |
@ O W
Origin 2 O 2 g
O 1 y 2

B

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add wto W

}
Longest path(G){

Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

A .) %
O
1 O~ 2
0 C 1 D) 5 2 .15
O O W
Origin 2 7 2 g
O 1 Y

B

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add wto W

}
Longest path(G){

Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

A .)«
O
. co ! O~_ 2 i ,
. 15
o S OW S 2/@ -« f
Origin 2 O 2 :
O Y

B 1
Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
if all incoming edges of w have been traversed, add wto W
}
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution
0 X

O
. co ! O~_ 2 i ,
. 15
pt & Ow 5 2 S O f
Origin 2 O 2 :
B i Y

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
if all incoming edges of w have been traversed, add wto W
}
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

A .) «
O
0 C 1 1 = 5 y)
-) . 15
O O woo : O
Origin 2 O 2 :
B 1 Y

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
if all incoming edges of w have been traversed, add wto W
}
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

O f

Critical Path (sub-graph)

LA

A
, AQ/Q\O .
Origin ?) 0
O 1 Y

B

Compute longest path in a graph G = <V,E,delay, Origin>
// delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
for each vertex v in W
for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
if all incoming edges of w have been traversed, add wto W
}
Longest path(G){
Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

5 min break

Timing for Optimization: Extra RequirementsfA

. Longest—path algorithm computes arrival times at each
node

* If we have constraints, need to propagate slack to each node
— A measure of how much timing margin exists at each node

— Can optimize a particular branch

* C(an trade slack for power, area, robustness

>

| |
| 7] |

|
clock

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Required Arrival Time

* Required arrival time R(v) 1s the time before which a

sighal must arrive to avoid a timing violation
Y

R(Y)
A dX—)Y
PN
X—>Z
R(Z)

Z

Required time is user defined at output:

RWV)=T-T
* Then recursively setup

R(v)= min (R(u)-d,_y)
ueFO(v)

where FO(v) ={Y,Z}and v = {X}

Required Time Propagation: Example | |LA

A
0 2 X
% ACI)/Q 2
0 C 1 5 3-4 15
O —O= *O f
- 0.15 [N > /A4 5.65 I 5 .50
Origin D 2 0
O 1 Y
= 0.45 3.45

* Assume required time at output R(f) = 5.80

* Propagate required times backwards

Timing Slack

* From arrival and required time can compute slack.
For each node v:

S(v) =R(v)—A(v)
* Slack reflects criticality of a node
* Positive slack
— Node is not on critical path. Timing constraints met.
e Zero slack
— Node is on critical path. Timing constraints are barely met.
* Negative slack

— There 1s a timing violation

* Slack distribution is key for timing optimization!

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Timing Slack Computation: Example! | LA

C?Eﬂ

O O— O f
Origin 4 . D) 4 0> B 0.15
O Y
B

* Compute slack at each node
S(v) =R(v) - A(v)

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Enhancements to STA LA

* Incremental timing analysis

— What happens if you change size of one gate ?

* Conservatism
— Multiple inputs switching
— Interference — crosstalk = coupling induce delay
— Nanometer-scale process effects — variation (= probabilistic
timing analysis)
— False paths
* Timing correction driven by STA
— Resize cells
— Buffer nets

_ Copy Clon%) CCHS Courtesy K. Keutzer et al. UCB
Puneet Gupta (puneetg@ucla.edu)

Incremental Timing LA

0 2 X
0 2
5 3.45 A5

O [0.95 |ad O f
.. 2 2 z BH 5.80
Origin D) 0

1 Y

3.45

* What needs to be recomputed if gate X is sized up ?
— Delay?
— AT?
— RT?

* On alarge circuit the difference can be several orders
of magnitude...

False Paths in STA LA

* Logical vs. Topological =2 logic functionality does not matter

* A major (critical) assumption hidden behind STA!

— All paths are sensitizable:

* There always exists a set of inputs that will cause the logic
propagating along any chosen path

:— " (a=2)—PoO
e e

* But this is NOT true in general

Pl

False Path Example LA

False path of delay 3

1
b ®
C

0
* Our previous algorithm will identify the red path as the longest
path!
— Is this path sensitizable?

* Identifying false paths tough: As hard as Boolean Satisfiability (SAT)
problem (NP-hard)

e Several effective heuristics exist

* Designer guidance is also common (set_false_path)

Puneet Gupta (puneetg@ucla.edu)

LA

Time borrowing/cycle stealing

LATCH1 FF2

A this point LATCHA

is OPENED and data CLK1
can PASS thio
crk 1% 25 ¢ e 5
DATA X ~ RENERCSSES—
& m—> ®
& borowed PATH 1 PA& delay L
CLK 1 "{ l‘l / e H
Ideally data Path 2 uses 0.5 ns slack available inthis cycle
frm PATH1
shud have PATH 1 borrowed 2 ns in this cycle.
amived here LATCH 1 made it possible, else there
wud have been tmg violation at 0 ns [http://ohotspot.blogspot.com/]

If these two were FI's, we will have a setup violation. Latches

can “borrow” time from previous stage = need to keep track of
time borrowing over many stages in STA

Capacitive Coupling

<

_ _ A o
" Cross-section view T |
/ [

| Ground Plane

* On-chip wires have significant capacitance to adjacent wires

— On the same layer

— On adjacent layers

— Wire under consideration: Victim; other wires with coupling to victim:

Agoressor

* Charge injected across Cc results in temporary (in static logic)
glitch in voltage from the supply rail at the victim

Puneet Gupta (puneetg@ucla.edu)

Cc

Cc

 H

T

 Ground Plane

Cv

Ca

Ca

S

W

Crosstalk: Timing Impact

* A switching victim is sped up by a

coupled AgoTessor that 1is switching Agoressor /

in the same direction Y e

— Potential “hold time” violation

— Tixes include adding delay elements
to your path

* A switching victim is hindered

\

(slowed down) by a coupled Aggressor \

aggressor that is switching in the

opposite direction Victim /\/

— Potential setup time violation

— Fixes include spacing the wires, using
stronger drivers

PU neet Gupta (pU neetg @ucla.edu) Slide courtesy of Paul Rodman, ReShape

Capacitive Coupling 1 A

Ry
hhLL

H
IH
-

!
: L. L,
Vy j—:fv :-l: Cov _‘I__'_ ‘
Figure 3: Equivalent circuat for two coupled lines
* Q=C_(AV,—AV,) = charge delivered to coupling capacitor
e A switches but V does not: AV = V5, A sees cap to eround and to B
DD ptog
— “Miller Coupling Factor” (MCF) =1

* Aand V switch in same ditection: no voltage change: AV = 0, C,; is effectively
absent

— MCF =0

* Aand V switch in opposite directions: voltage change AV = 2V, twice as
much charge is required, C,4; is effectively doubled

— MCF =2
Puneet Gupta (puneetg@ucla.edu)

Crosstalk Delay Calculation: Levels LA
of Accuracy

* Discard coupling capacitances or ground them
(MCF=0)

* De-coupling by replacing coupling caps by
conservative caps (MCF = 2 for setup; MCF=0 Aggressor1
for hold)

— True worst-case can be MCF = 3 for setup and MCF= Aggressor 2
-1 for hold

* Why ??

* De-coupling by Miller factors on a per net basis

— MCF depends on aggressor alignment, slews

* More sophisticated (but very slow) methods

— E.g., Simulating multi-input multi-output networks

Puneet Gupta (puneetg@ucla.edu)

Calculation Flow 1 A

" Timing window overlaps enable crosstalk delay variation

" Chicken-egg situation: delay vs. crosstalk

" [teration

o Starting with the assumption that all Aggressor
timing windows are overlapped
(pessimistic about the unknowns)

o Refine calculation by reducing Victim
pessimism
Timing window A delay
assumptions

Crosstalk delay
calculation

Puneet Gupta (puneetg@ucla.e

Scaling of Delay Uncertainty 1 A

Delay Uncertainty

Delay .
80‘_
75
° o —~ 707
X 657
I ~~ 60
Noise = o]
o) >, 507
= Ia 451

/_ 401 Delay Uncertainty

—e—
/ 22 : Nominal Delay
' 4 25] T T T T T T T T T T T "
Aggressor Victim 0.35 0.30 0.25 0.20 0.15 0.10

Technology Generation (um)

* Accurate crosstalk delay estimation is vector dependent and (almost)
impossible =2 pessimism and simplifications

* Relatively greater coupling noise due to line dimension scaling
* Tighter timing budgets to achieve fast circuit speed (“all paths critical”)
* Guardbanding of timing analysis by MCE’s (-1 to +3, etc.)

PU neet Gupta (pU neetg @ucla.edu) Slide courtesy of Kevin Cao, Berkeley

Crosstalk From Capacitive Coupling

* Glitches caused by capacitive coupling between wires
— An “aggressor” wire switches

— A “victim” wire 1s charged or discharged by the coupling capacitance
* An otherwise quiet victim may look like it has temporarily switched
e 'This is bad if:

— 'The victim 1s a clock or asynchronous reset

— 'The victim is a signal whose value 1s being latched at that moment

Aggressor /

Victim /\

Slide courtesy of Paul Rodman, ReShape

Puneet Gupta (puneetg@ucla.edu)

	�Static Timing Analysis (STA)
	Logistics
	Let’s Revisit Cycle Time and Path Delay
	Cycle Time - Setup Time
	Cycle Time – Clock Skew
	Cycle Time – Flip-Flop Delay (Clock to Q)
	Min Path Delay - Hold Time
	Setup, Hold, Cycle Times
	Summary of Constraints (Edge-Triggered FFs)
	Example of tpdmax Violation
	Example of tpdmin Violation: Race Through
	Timing Analysis for Digital Chips
	Why “Static”
	Approach – Reduce to Combinational
	Gate Delay Models
	Interconnect Delay Model
	Problem Formulation - 1
	Problem Formulation - 2
	Block Based STA
	Problem Formulation - 3
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Critical Path (sub-graph)
	5 min break
	Timing for Optimization: Extra Requirements
	Required Arrival Time
	Required Time Propagation: Example
	Timing Slack
	Timing Slack Computation: Example
	Enhancements to STA
	Incremental Timing
	False Paths in STA
	False Path Example
	Time borrowing/cycle stealing
	Capacitive Coupling
	Crosstalk: Timing Impact
	Capacitive Coupling
	Crosstalk Delay Calculation: Levels of Accuracy
	Calculation Flow
	Scaling of Delay Uncertainty
	Crosstalk From Capacitive Coupling

