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Logistics

• Lab 2 is assigned.
– The course will be very fast paced.

• We will have labs every week
– Lab 4 is critical to prepare for the Final Project

• Final Project v0 should be assigned in Week 5/6.
– Midterm project report due in Week 8

• Quiz 1, Feb 8 in class at beginning of class
– Second half of class: Cadence Innovus Tutorial

• No Office hours for me on Feb 7.
– Please email me with any questions not answered on Piazza or if you want 

to have a zoom call for something. 
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Let’s Revisit Cycle Time and Path Delay

• Cycle time (T) cannot be 
smaller than longest path 
delay (Tmax)

• Longest (critical) path 
delay is a function of:

• Total gate, wire delays
– logic levels

clock

Q1 Q2

Tclock1 Tclock2
critical path, 

~5 logic levels

Tclock1

data
cycle time

maxT T≤

Courtesy K. Keutzer et al. UCB
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Cycle Time - Setup Time

• For FFs to correctly 
capture data at inputs, 
must be stable for:

• Setup time (Tsetup) before
clock arrives

clock

Q1 Q2

Tclock1 Tclock2
critical path, 

~5 logic levels

Tclock1

data
setup time

max setupT T T+ ≤

Courtesy K. Keutzer et al. UCB
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Cycle Time – Clock Skew

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2

data

clock skew
Q2

5

 If clock network has 
unbalanced delay – clock 
skew

Cycle time is also a function 
of clock skew (Tskew)

max setup skewT T T T+ + ≤

critical path, 
~5 logic levels

Courtesy K. Keutzer et al. UCB
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Cycle Time – Flip-Flop Delay (Clock to Q)

• Cycle time is also a 
function of propagation 
delay of FF (Tclk-to-Q or 
Tc2q)

• Tc2q : time from arrival of 
clock signal till change at 
FF output)

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2
clock-to-Q

data

Q2

max setup skew clk to QT T T T T− −+ + + ≤

critical path, 
~5 logic levels

Courtesy K. Keutzer et al. UCB
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Min Path Delay - Hold Time

• For FFs to correctly 
latch data, data must 
be stable during:

• Hold time (Thold) after clock 
arrives

• Determined by delay of shortest 
path in circuit (Tmin) and clock 
skew (Tskew)

clock

Q1 Q2

Tclock1 Tclock2
short path, ~3 

logic levels

Tclock1

data
hold time

min hold skewT T T≥ +

Courtesy K. Keutzer et al. UCB
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Setup, Hold, Cycle Times

set-up time – D stable
before clock

cycle time

Example of a single phase clock

hold time –
D stable 
after clock

When signal
may change

Courtesy K. Keutzer et al. UCB
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Summary of Constraints (Edge-
Triggered FFs)

• Max(tpd) < tperiod – tsetup – tc2q – tskew
– Delay is too long for data to be captured

• Min(tpd) > thold-tc2q+tskew
– Delay is too short and data can race through, skipping a state

FlipFlop

tper

Comb

Logic

Courtesy K. Yang, UCLA



Puneet Gupta (puneetg@ucla.edu)

Example of tpdmax Violation
• Suppose there is skew between the registers in a dataflow 

(regA after regB)
• “i” gets its input values from regA at transition in Ck’
• CL output “o” arrives after Ck transition due to skew
• To correct this problem, can increase cycle time

i

o

regA

regB

tpdmax

Ck’ Ck

Ck
Ck’

i o

tskew

Too late!

tpdmax

Comb

Logic

Courtesy K. Yang, UCLA
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Example of tpdmin Violation: Race 
Through

• Suppose clock skew causes regA to be clocked before regB
• “i” passes through the CL with little delay (tpdmin)
• “o” arrives before the rising Ck’ causes the data to be latched. 
• Cannot be fixed by changing frequency have rock instead of chip

i

o
regA

regB

tpdmin

Ck Ck’

Ck
Ck’

i o

tskew

Too early!

tpdmin

Comb

Logic

Courtesy K. Yang, UCLA
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Timing Analysis for Digital Chips

• Need to figure out how fast the chip runs
– Setup and hold checks

• Need to be able to analyze 1M+ gate design in seconds 
to minutes
– Since will need to figure out how fast the chip runs many

times during circuit optimizations

• Don’t necessarily need to know if the chip is 
implementing the correct function at the same time
– That can be verified separately
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Why “Static”

• Dynamic timing analysis: input vector dependent
– E.g., SPICE circuit simulation, Verilog simulation with timing
– Accurate but..
– Impractical for chips with 100s of inputs

• Static timing analysis: smart way of worst-casing vectors
– No input vectors required

• Modern timers take a lot of vector like hints

– Tends to be pessimistic (though not always)
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Approach – Reduce to Combinational 

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

extracted block

Combinational
logic

Courtesy K. Keutzer et al. UCB
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Gate Delay Models
• Delay is a function of fanout/slew

– Table based
– Wire load is not just capacitance: wires 

have resistance!  common way is to 
use a “Effective Capacitance” model

• Input pins are different

Gate /Cell

Tin

Ceff

Gate /Cell

Tin Rπ

C1
C2



Puneet Gupta (puneetg@ucla.edu)

Interconnect Delay Model
• Interconnect delay becomes a dominant portion of total delay
• Lumped RC model

• Distributed RC tree

• For our purpose, we assume point-to-point wiring delays are pre-
characterized as cell delays
– Different interconnect have different delays
– Example: Elmore Delay Model, AWE, etc (EE201C covers this)
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Problem Formulation - 1
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• Use a labeled 
directed graph 

• G = <V,E>
• Vertices represent 

gates, primary 
inputs and primary 
outputs

• Edges represent 
wires

• Labels represent 
delays

Courtesy K. Keutzer et al. UCB

Note:  This is a simplistic view of the 
timing graph!  A real timing graph will (at 
least) have a vertex for each input or 
output pin of each gate, and will also 
distinguish rise and fall delays. 
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Problem Formulation - 2
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• Use a labeled directed graph 
• G = <V,E>
• Find the circuit maximum 

delay
• Enumerate all paths - choose 

the longest?
– How many paths in this 

simple graph ?
• 2n

Courtesy K. Keutzer et al. UCB



Puneet Gupta (puneetg@ucla.edu)

Block Based STA
• Arrival times (AT) at a node

– Time when signal arrives at the node
– Latest time signal can become stable
– Determined by longest path from source
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Problem Formulation - 3

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

Compute longest path in a graph G = <V,E,delay,Orig in> 
// delay is set of labels, Orig in is the super-source of the DAG

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add w to W
}
Longest path(G){

Forward_prop(Origin) }

0

0

0

0

0

Origin

(Kirkpatrick 1966, IBM JRD)

Courtesy K. Keutzer et al. UCB
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Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

0

0

Origin

0

Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Convention:  Pink numbers represent the 
accumulated delay (“actual arrival time”) at 
the output of the given node.
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB



Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Algorithm Execution
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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Critical Path (sub-graph)
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Compute longest path in a graph G = <V,E,delay,Origin> 
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
      for each edge <v,w> from v
  Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
            if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB
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5 min break
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Timing for Optimization: Extra Requirements
• Longest-path algorithm computes arrival times at each 

node
• If we have constraints, need to propagate slack to each node 

– A measure of how much timing margin exists at each node
– Can optimize a particular branch

• Can trade slack for power, area, robustness

clock
Courtesy K. Keutzer et al. UCB
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Required Arrival Time

• Required arrival time R(v) is the time before which a 
signal must arrive to avoid a timing violation

• Then recursively

X

Y

R(Z)
Z

Yxd →

X zd →
R(X)

R(Y)

u
u

R( ) min (R(u) d )υ→
∈ υ

υ = −
FO( )

where {Y,Z} and {X}υ υ FO( ) = =

Required time is user defined at output: 
                                       setupR(v) = T - T

Courtesy K. Keutzer et al. UCB
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Required Time Propagation: Example
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• Assume required time at output R(f) = 5.80
• Propagate required times backwards
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Courtesy K. Keutzer et al. UCB



Puneet Gupta (puneetg@ucla.edu)

Timing Slack
• From arrival and required time can compute slack. 

For each node v:

• Slack reflects criticality of a node
• Positive slack

– Node is not on critical path. Timing constraints met.

• Zero slack
– Node is on critical path. Timing constraints are barely met.

• Negative slack
– There is a timing violation

• Slack distribution is key for timing optimization!

S( ) R( ) A( )υ = υ − υ

Courtesy K. Keutzer et al. UCB
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Timing Slack Computation: Example

• Compute slack at each node

C

B

f

X

Y

W

A

ZOrigin
-0.15

-0.15

0.45

-0.15

0.45

-0.15

1.45

-0.15

S( ) R( ) A( )υ = υ − υ

Courtesy K. Keutzer et al. UCB
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Enhancements to STA

• Incremental timing analysis
– What happens if you change size of one gate ?

• Conservatism
– Multiple inputs switching
– Interference – crosstalk  coupling induce delay
– Nanometer-scale process effects – variation ( probabilistic 

timing analysis)
– False paths

• Timing correction driven by STA
– Resize cells
– Buffer nets
– Copy (clone) cells Courtesy K. Keutzer et al. UCB
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Incremental Timing
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• What needs to be recomputed if gate X is sized up ?
– Delay?
– AT ?
– RT ?

• On a large circuit the difference can be several orders 
of magnitude…

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

5.65

3.45

3.45

0.95

0.45

-0.15

1.45

5.80

Courtesy K. Keutzer et al. UCB
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False Paths in STA
• Logical vs. Topological  logic functionality does not matter

• A major (critical) assumption hidden behind STA!
– All paths are sensitizable: 

• There always exists a set of inputs that will cause the logic 
propagating along any chosen path

• But this is NOT true in general
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False Path Example

• Our previous algorithm will identify the red path as the longest 
path!
– Is this path sensitizable?

• Identifying false paths tough: As hard as Boolean Satisfiability (SAT) 
problem (NP-hard)
• Several effective heuristics exist
• Designer guidance is also common (set_false_path)
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Time borrowing/cycle stealing

• If these two were FFs, we will have a setup violation. Latches 
can “borrow” time from previous stage  need to keep track of 
time borrowing over many stages in STA

[http://ohotspot.blogspot.com/]
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Capacitive Coupling

• On-chip wires have significant capacitance to adjacent wires
– On the same layer
– On adjacent layers
– Wire under consideration: Victim; other wires with coupling to victim: 

aggressor

• Charge injected across Cc results in temporary (in static logic) 
glitch in voltage from the supply rail at the victim
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Crosstalk:  Timing Impact

• A switching victim is sped up by a 
coupled aggressor that is switching 
in the same direction
– Potential “hold time” violation
– Fixes include adding delay elements 

to your path

• A switching victim is hindered 
(slowed down) by a coupled 
aggressor that is switching in the 
opposite direction
– Potential setup time violation
– Fixes include spacing the wires, using 

stronger drivers

Aggressor

Victim

Slide courtesy of Paul Rodman, ReShape

Aggressor

Victim
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Capacitive Coupling 

• Q = Cc (∆Vv – ∆VA) = charge delivered to coupling capacitor

• A switches but V does not:  ∆V = VDD, A sees cap to ground and to B 
– “Miller Coupling Factor” (MCF) = 1

• A and V switch in same direction: no voltage change: ∆V = 0, Cadj is effectively 
absent
– MCF = 0

• A and V switch in opposite directions:  voltage change ∆V = 2VDD, twice as 
much charge is required, Cadj is effectively doubled
– MCF = 2
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Crosstalk Delay Calculation: Levels 
of Accuracy

• Discard coupling capacitances or ground them 
(MCF=0)

• De-coupling by replacing coupling caps by 
conservative caps (MCF = 2 for setup; MCF=0 
for hold)
– True worst-case can be MCF = 3 for setup and MCF= 

-1 for hold
• Why ??

• De-coupling by Miller factors on a per net basis
– MCF depends on aggressor alignment, slews

• More sophisticated (but very slow) methods
– E.g., Simulating multi-input multi-output networks 

Aggressor 1

Aggressor 2

alignment
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Calculation Flow
 Timing window overlaps enable crosstalk delay variation

 Chicken-egg situation: delay vs. crosstalk 

Aggressor 

Victim  

∆ delay 

overlap

 Iteration
 Starting with the assumption that all 

timing windows are overlapped 
(pessimistic about the unknowns)

 Refine calculation by reducing 
pessimism 

Timing window 
assumptions Crosstalk delay 

calculation
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Scaling of Delay Uncertainty

• Accurate crosstalk delay estimation is vector dependent and (almost) 
impossible pessimism and simplifications

• Relatively greater coupling noise due to line dimension scaling
• Tighter timing budgets to achieve fast circuit speed (“all paths critical”)
• Guardbanding of timing analysis by MCF’s (-1 to +3, etc.)

Delay

Noise
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Crosstalk From Capacitive Coupling 
• Glitches caused by capacitive coupling between wires

– An “aggressor” wire switches
– A “victim” wire is charged or discharged by the coupling capacitance

• An otherwise quiet victim may look like it has temporarily switched
• This is bad if:

– The victim is a clock or asynchronous reset
– The victim is a signal whose value is being latched at that moment

Aggressor

Victim

Slide courtesy of Paul Rodman, ReShape
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