
Puneet Gupta (puneetg@ucla.edu)

Static Timing Analysis (STA)

Some contributions from
Lei He
Andrew B. Kahng
Igor Markov
Mohammad Tehranipoor

Puneet Gupta (puneetg@ucla.edu)

Logistics

• Lab 2 is assigned.
– The course will be very fast paced.

• We will have labs every week
– Lab 4 is critical to prepare for the Final Project

• Final Project v0 should be assigned in Week 5/6.
– Midterm project report due in Week 8

• Quiz 1, Feb 8 in class at beginning of class
– Second half of class: Cadence Innovus Tutorial

• No Office hours for me on Feb 7.
– Please email me with any questions not answered on Piazza or if you want

to have a zoom call for something.

Puneet Gupta (puneetg@ucla.edu)

Let’s Revisit Cycle Time and Path Delay

• Cycle time (T) cannot be
smaller than longest path
delay (Tmax)

• Longest (critical) path
delay is a function of:

• Total gate, wire delays
– logic levels

clock

Q1 Q2

Tclock1 Tclock2
critical path,

~5 logic levels

Tclock1

data
cycle time

maxT T≤

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time - Setup Time

• For FFs to correctly
capture data at inputs,
must be stable for:

• Setup time (Tsetup) before
clock arrives

clock

Q1 Q2

Tclock1 Tclock2
critical path,

~5 logic levels

Tclock1

data
setup time

max setupT T T+ ≤

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time – Clock Skew

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2

data

clock skew
Q2

5

 If clock network has
unbalanced delay – clock
skew

Cycle time is also a function
of clock skew (Tskew)

max setup skewT T T T+ + ≤

critical path,
~5 logic levels

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time – Flip-Flop Delay (Clock to Q)

• Cycle time is also a
function of propagation
delay of FF (Tclk-to-Q or
Tc2q)

• Tc2q : time from arrival of
clock signal till change at
FF output)

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2
clock-to-Q

data

Q2

max setup skew clk to QT T T T T− −+ + + ≤

critical path,
~5 logic levels

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Min Path Delay - Hold Time

• For FFs to correctly
latch data, data must
be stable during:

• Hold time (Thold) after clock
arrives

• Determined by delay of shortest
path in circuit (Tmin) and clock
skew (Tskew)

clock

Q1 Q2

Tclock1 Tclock2
short path, ~3

logic levels

Tclock1

data
hold time

min hold skewT T T≥ +

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Setup, Hold, Cycle Times

set-up time – D stable
before clock

cycle time

Example of a single phase clock

hold time –
D stable
after clock

When signal
may change

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Summary of Constraints (Edge-
Triggered FFs)

• Max(tpd) < tperiod – tsetup – tc2q – tskew
– Delay is too long for data to be captured

• Min(tpd) > thold-tc2q+tskew
– Delay is too short and data can race through, skipping a state

FlipFlop

tper

Comb

Logic

Courtesy K. Yang, UCLA

Puneet Gupta (puneetg@ucla.edu)

Example of tpdmax Violation
• Suppose there is skew between the registers in a dataflow

(regA after regB)
• “i” gets its input values from regA at transition in Ck’
• CL output “o” arrives after Ck transition due to skew
• To correct this problem, can increase cycle time

i

o

regA

regB

tpdmax

Ck’ Ck

Ck
Ck’

i o

tskew

Too late!

tpdmax

Comb

Logic

Courtesy K. Yang, UCLA

Puneet Gupta (puneetg@ucla.edu)

Example of tpdmin Violation: Race
Through

• Suppose clock skew causes regA to be clocked before regB
• “i” passes through the CL with little delay (tpdmin)
• “o” arrives before the rising Ck’ causes the data to be latched.
• Cannot be fixed by changing frequency have rock instead of chip

i

o
regA

regB

tpdmin

Ck Ck’

Ck
Ck’

i o

tskew

Too early!

tpdmin

Comb

Logic

Courtesy K. Yang, UCLA

Puneet Gupta (puneetg@ucla.edu)

Timing Analysis for Digital Chips

• Need to figure out how fast the chip runs
– Setup and hold checks

• Need to be able to analyze 1M+ gate design in seconds
to minutes
– Since will need to figure out how fast the chip runs many

times during circuit optimizations

• Don’t necessarily need to know if the chip is
implementing the correct function at the same time
– That can be verified separately

Puneet Gupta (puneetg@ucla.edu)

Why “Static”

• Dynamic timing analysis: input vector dependent
– E.g., SPICE circuit simulation, Verilog simulation with timing
– Accurate but..
– Impractical for chips with 100s of inputs

• Static timing analysis: smart way of worst-casing vectors
– No input vectors required

• Modern timers take a lot of vector like hints

– Tends to be pessimistic (though not always)

Puneet Gupta (puneetg@ucla.edu)

Approach – Reduce to Combinational

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

extracted block

Combinational
logic

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Gate Delay Models
• Delay is a function of fanout/slew

– Table based
– Wire load is not just capacitance: wires

have resistance! common way is to
use a “Effective Capacitance” model

• Input pins are different

Gate /Cell

Tin

Ceff

Gate /Cell

Tin Rπ

C1
C2

Puneet Gupta (puneetg@ucla.edu)

Interconnect Delay Model
• Interconnect delay becomes a dominant portion of total delay
• Lumped RC model

• Distributed RC tree

• For our purpose, we assume point-to-point wiring delays are pre-
characterized as cell delays
– Different interconnect have different delays
– Example: Elmore Delay Model, AWE, etc (EE201C covers this)

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 1

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

A

C

B

f

2

2

2
1

0

.1

0

.2
.2

.2

.1

X

Y
Z

W

.15

.5

1

0

1
2

2

2

Z

• Use a labeled
directed graph

• G = <V,E>
• Vertices represent

gates, primary
inputs and primary
outputs

• Edges represent
wires

• Labels represent
delays

Courtesy K. Keutzer et al. UCB

Note: This is a simplistic view of the
timing graph! A real timing graph will (at
least) have a vertex for each input or
output pin of each gate, and will also
distinguish rise and fall delays.

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 2

A

C

B

f

2

2

2
1

0

.1

0

.2
.2

.2

.1

X

Y
Z

W

.15

.5

1

0

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

• Use a labeled directed graph
• G = <V,E>
• Find the circuit maximum

delay
• Enumerate all paths - choose

the longest?
– How many paths in this

simple graph ?
• 2n

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Block Based STA
• Arrival times (AT) at a node

– Time when signal arrives at the node
– Latest time signal can become stable
– Determined by longest path from source

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 3

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

Compute longest path in a graph G = <V,E,delay,Orig in>
// delay is set of labels, Orig in is the super-source of the DAG

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add w to W
}
Longest path(G){

Forward_prop(Origin) }

0

0

0

0

0

Origin

(Kirkpatrick 1966, IBM JRD)

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

0

0

Origin

0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Convention: Pink numbers represent the
accumulated delay (“actual arrival time”) at
the output of the given node.

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

000

Origin 0

0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

.1

0

Origin

0

0

0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1

2

2

2

Z

0

0

0

.1

0

Origin

0

0

0

2.0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

.1

0

Origin

1.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

.1

0

Origin

1.1

2.2

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

Z

0

0

0

.1

0

Origin

1.1

2

3.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

0

0

0

0

0

Origin

1.1

2

3

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

0

0

0

0

0

Origin

1.1

2

5.8

3.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

0

0

0

0

0

Origin

1.1

2

5.8

3.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z
0

0

0

0

0

Origin

1.1

2

5.8

3

5.95

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Critical Path (sub-graph)

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z
0

0

0

0

0

Origin

1.1

2

5.8

3

5.95

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

5 min break

Puneet Gupta (puneetg@ucla.edu)

Timing for Optimization: Extra Requirements
• Longest-path algorithm computes arrival times at each

node
• If we have constraints, need to propagate slack to each node

– A measure of how much timing margin exists at each node
– Can optimize a particular branch

• Can trade slack for power, area, robustness

clock
Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Required Arrival Time

• Required arrival time R(v) is the time before which a
signal must arrive to avoid a timing violation

• Then recursively

X

Y

R(Z)
Z

Yxd →

X zd →
R(X)

R(Y)

u
u

R() min (R(u) d)υ→
∈ υ

υ = −
FO()

where {Y,Z} and {X}υ υ FO() = =

Required time is user defined at output:
 setupR(v) = T - T

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Required Time Propagation: Example

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

• Assume required time at output R(f) = 5.80
• Propagate required times backwards

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

5.65

3.45

3.45

0.95

0.45

-0.15

1.45

5.80

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Timing Slack
• From arrival and required time can compute slack.

For each node v:

• Slack reflects criticality of a node
• Positive slack

– Node is not on critical path. Timing constraints met.

• Zero slack
– Node is on critical path. Timing constraints are barely met.

• Negative slack
– There is a timing violation

• Slack distribution is key for timing optimization!

S() R() A()υ = υ − υ

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Timing Slack Computation: Example

• Compute slack at each node

C

B

f

X

Y

W

A

ZOrigin
-0.15

-0.15

0.45

-0.15

0.45

-0.15

1.45

-0.15

S() R() A()υ = υ − υ

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Enhancements to STA

• Incremental timing analysis
– What happens if you change size of one gate ?

• Conservatism
– Multiple inputs switching
– Interference – crosstalk coupling induce delay
– Nanometer-scale process effects – variation (probabilistic

timing analysis)
– False paths

• Timing correction driven by STA
– Resize cells
– Buffer nets
– Copy (clone) cells Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Incremental Timing

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

• What needs to be recomputed if gate X is sized up ?
– Delay?
– AT ?
– RT ?

• On a large circuit the difference can be several orders
of magnitude…

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

5.65

3.45

3.45

0.95

0.45

-0.15

1.45

5.80

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

False Paths in STA
• Logical vs. Topological logic functionality does not matter

• A major (critical) assumption hidden behind STA!
– All paths are sensitizable:

• There always exists a set of inputs that will cause the logic
propagating along any chosen path

• But this is NOT true in general

Puneet Gupta (puneetg@ucla.edu)

False Path Example

• Our previous algorithm will identify the red path as the longest
path!
– Is this path sensitizable?

• Identifying false paths tough: As hard as Boolean Satisfiability (SAT)
problem (NP-hard)
• Several effective heuristics exist
• Designer guidance is also common (set_false_path)

g

a

b

d

e

f

0

0

1

1

c
1

False path of delay 3

1

1

0

Puneet Gupta (puneetg@ucla.edu)

Time borrowing/cycle stealing

• If these two were FFs, we will have a setup violation. Latches
can “borrow” time from previous stage need to keep track of
time borrowing over many stages in STA

[http://ohotspot.blogspot.com/]

Puneet Gupta (puneetg@ucla.edu)

Capacitive Coupling

• On-chip wires have significant capacitance to adjacent wires
– On the same layer
– On adjacent layers
– Wire under consideration: Victim; other wires with coupling to victim:

aggressor

• Charge injected across Cc results in temporary (in static logic)
glitch in voltage from the supply rail at the victim

W S

Ca CaCv

 Ground Plane

T

 H

Cc Cc Cross-section view

Cc

Cc

 H

T

 Ground Plane

Cv

Ca

Ca

S

W

Puneet Gupta (puneetg@ucla.edu)

Crosstalk: Timing Impact

• A switching victim is sped up by a
coupled aggressor that is switching
in the same direction
– Potential “hold time” violation
– Fixes include adding delay elements

to your path

• A switching victim is hindered
(slowed down) by a coupled
aggressor that is switching in the
opposite direction
– Potential setup time violation
– Fixes include spacing the wires, using

stronger drivers

Aggressor

Victim

Slide courtesy of Paul Rodman, ReShape

Aggressor

Victim

Puneet Gupta (puneetg@ucla.edu)

Capacitive Coupling

• Q = Cc (∆Vv – ∆VA) = charge delivered to coupling capacitor

• A switches but V does not: ∆V = VDD, A sees cap to ground and to B
– “Miller Coupling Factor” (MCF) = 1

• A and V switch in same direction: no voltage change: ∆V = 0, Cadj is effectively
absent
– MCF = 0

• A and V switch in opposite directions: voltage change ∆V = 2VDD, twice as
much charge is required, Cadj is effectively doubled
– MCF = 2

Puneet Gupta (puneetg@ucla.edu)

Crosstalk Delay Calculation: Levels
of Accuracy

• Discard coupling capacitances or ground them
(MCF=0)

• De-coupling by replacing coupling caps by
conservative caps (MCF = 2 for setup; MCF=0
for hold)
– True worst-case can be MCF = 3 for setup and MCF=

-1 for hold
• Why ??

• De-coupling by Miller factors on a per net basis
– MCF depends on aggressor alignment, slews

• More sophisticated (but very slow) methods
– E.g., Simulating multi-input multi-output networks

Aggressor 1

Aggressor 2

alignment

Puneet Gupta (puneetg@ucla.edu)

Calculation Flow
 Timing window overlaps enable crosstalk delay variation

 Chicken-egg situation: delay vs. crosstalk

Aggressor

Victim

∆ delay

overlap

 Iteration
 Starting with the assumption that all

timing windows are overlapped
(pessimistic about the unknowns)

 Refine calculation by reducing
pessimism

Timing window
assumptions Crosstalk delay

calculation

Puneet Gupta (puneetg@ucla.edu)

Scaling of Delay Uncertainty

• Accurate crosstalk delay estimation is vector dependent and (almost)
impossible pessimism and simplifications

• Relatively greater coupling noise due to line dimension scaling
• Tighter timing budgets to achieve fast circuit speed (“all paths critical”)
• Guardbanding of timing analysis by MCF’s (-1 to +3, etc.)

Delay

Noise

Aggressor Victim

Delay Uncertainty

0.35 0.30 0.25 0.20 0.15 0.10
25
30
35
40
45
50
55
60
65
70
75
80
85

∆T
d

/ T
d

(%
)

Technology Generation (μm)

Nominal Delay
Delay Uncertainty

Slide courtesy of Kevin Cao, Berkeley

Puneet Gupta (puneetg@ucla.edu)

Crosstalk From Capacitive Coupling
• Glitches caused by capacitive coupling between wires

– An “aggressor” wire switches
– A “victim” wire is charged or discharged by the coupling capacitance

• An otherwise quiet victim may look like it has temporarily switched
• This is bad if:

– The victim is a clock or asynchronous reset
– The victim is a signal whose value is being latched at that moment

Aggressor

Victim

Slide courtesy of Paul Rodman, ReShape

	�Static Timing Analysis (STA)
	Logistics
	Let’s Revisit Cycle Time and Path Delay
	Cycle Time - Setup Time
	Cycle Time – Clock Skew
	Cycle Time – Flip-Flop Delay (Clock to Q)
	Min Path Delay - Hold Time
	Setup, Hold, Cycle Times
	Summary of Constraints (Edge-Triggered FFs)
	Example of tpdmax Violation
	Example of tpdmin Violation: Race Through
	Timing Analysis for Digital Chips
	Why “Static”
	Approach – Reduce to Combinational
	Gate Delay Models
	Interconnect Delay Model
	Problem Formulation - 1
	Problem Formulation - 2
	Block Based STA
	Problem Formulation - 3
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Critical Path (sub-graph)
	5 min break
	Timing for Optimization: Extra Requirements
	Required Arrival Time
	Required Time Propagation: Example
	Timing Slack
	Timing Slack Computation: Example
	Enhancements to STA
	Incremental Timing
	False Paths in STA
	False Path Example
	Time borrowing/cycle stealing
	Capacitive Coupling
	Crosstalk: Timing Impact
	Capacitive Coupling
	Crosstalk Delay Calculation: Levels of Accuracy
	Calculation Flow
	Scaling of Delay Uncertainty
	Crosstalk From Capacitive Coupling

