
Puneet Gupta (puneetg@ucla.edu)

Static Timing Analysis (STA)

Some contributions from
Lei He
Andrew B. Kahng
Igor Markov
Mohammad Tehranipoor

Puneet Gupta (puneetg@ucla.edu)

Logistics

• Lab 2 is assigned.
– The course will be very fast paced.

• We will have labs every week
– Lab 4 is critical to prepare for the Final Project

• Final Project v0 should be assigned in Week 5/6.
– Midterm project report due in Week 8

• Quiz 1, Feb 8 in class at beginning of class
– Second half of class: Cadence Innovus Tutorial

• No Office hours for me on Feb 7.
– Please email me with any questions not answered on Piazza or if you want

to have a zoom call for something.

Puneet Gupta (puneetg@ucla.edu)

Let’s Revisit Cycle Time and Path Delay

• Cycle time (T) cannot be
smaller than longest path
delay (Tmax)

• Longest (critical) path
delay is a function of:

• Total gate, wire delays
– logic levels

clock

Q1 Q2

Tclock1 Tclock2
critical path,

~5 logic levels

Tclock1

data
cycle time

maxT T≤

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time - Setup Time

• For FFs to correctly
capture data at inputs,
must be stable for:

• Setup time (Tsetup) before
clock arrives

clock

Q1 Q2

Tclock1 Tclock2
critical path,

~5 logic levels

Tclock1

data
setup time

max setupT T T+ ≤

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time – Clock Skew

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2

data

clock skew
Q2

5

 If clock network has
unbalanced delay – clock
skew

Cycle time is also a function
of clock skew (Tskew)

max setup skewT T T T+ + ≤

critical path,
~5 logic levels

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Cycle Time – Flip-Flop Delay (Clock to Q)

• Cycle time is also a
function of propagation
delay of FF (Tclk-to-Q or
Tc2q)

• Tc2q : time from arrival of
clock signal till change at
FF output)

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2
clock-to-Q

data

Q2

max setup skew clk to QT T T T T− −+ + + ≤

critical path,
~5 logic levels

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Min Path Delay - Hold Time

• For FFs to correctly
latch data, data must
be stable during:

• Hold time (Thold) after clock
arrives

• Determined by delay of shortest
path in circuit (Tmin) and clock
skew (Tskew)

clock

Q1 Q2

Tclock1 Tclock2
short path, ~3

logic levels

Tclock1

data
hold time

min hold skewT T T≥ +

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Setup, Hold, Cycle Times

set-up time – D stable
before clock

cycle time

Example of a single phase clock

hold time –
D stable
after clock

When signal
may change

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Summary of Constraints (Edge-
Triggered FFs)

• Max(tpd) < tperiod – tsetup – tc2q – tskew
– Delay is too long for data to be captured

• Min(tpd) > thold-tc2q+tskew
– Delay is too short and data can race through, skipping a state

FlipFlop

tper

Comb

Logic

Courtesy K. Yang, UCLA

Puneet Gupta (puneetg@ucla.edu)

Example of tpdmax Violation
• Suppose there is skew between the registers in a dataflow

(regA after regB)
• “i” gets its input values from regA at transition in Ck’
• CL output “o” arrives after Ck transition due to skew
• To correct this problem, can increase cycle time

i

o

regA

regB

tpdmax

Ck’ Ck

Ck
Ck’

i o

tskew

Too late!

tpdmax

Comb

Logic

Courtesy K. Yang, UCLA

Puneet Gupta (puneetg@ucla.edu)

Example of tpdmin Violation: Race
Through

• Suppose clock skew causes regA to be clocked before regB
• “i” passes through the CL with little delay (tpdmin)
• “o” arrives before the rising Ck’ causes the data to be latched.
• Cannot be fixed by changing frequency have rock instead of chip

i

o
regA

regB

tpdmin

Ck Ck’

Ck
Ck’

i o

tskew

Too early!

tpdmin

Comb

Logic

Courtesy K. Yang, UCLA

Puneet Gupta (puneetg@ucla.edu)

Timing Analysis for Digital Chips

• Need to figure out how fast the chip runs
– Setup and hold checks

• Need to be able to analyze 1M+ gate design in seconds
to minutes
– Since will need to figure out how fast the chip runs many

times during circuit optimizations

• Don’t necessarily need to know if the chip is
implementing the correct function at the same time
– That can be verified separately

Puneet Gupta (puneetg@ucla.edu)

Why “Static”

• Dynamic timing analysis: input vector dependent
– E.g., SPICE circuit simulation, Verilog simulation with timing
– Accurate but..
– Impractical for chips with 100s of inputs

• Static timing analysis: smart way of worst-casing vectors
– No input vectors required

• Modern timers take a lot of vector like hints

– Tends to be pessimistic (though not always)

Puneet Gupta (puneetg@ucla.edu)

Approach – Reduce to Combinational

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

extracted block

Combinational
logic

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Gate Delay Models
• Delay is a function of fanout/slew

– Table based
– Wire load is not just capacitance: wires

have resistance!  common way is to
use a “Effective Capacitance” model

• Input pins are different

Gate /Cell

Tin

Ceff

Gate /Cell

Tin Rπ

C1
C2

Puneet Gupta (puneetg@ucla.edu)

Interconnect Delay Model
• Interconnect delay becomes a dominant portion of total delay
• Lumped RC model

• Distributed RC tree

• For our purpose, we assume point-to-point wiring delays are pre-
characterized as cell delays
– Different interconnect have different delays
– Example: Elmore Delay Model, AWE, etc (EE201C covers this)

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 1

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

A

C

B

f

2

2

2
1

0

.1

0

.2
.2

.2

.1

X

Y
Z

W

.15

.5

1

0

1
2

2

2

Z

• Use a labeled
directed graph

• G = <V,E>
• Vertices represent

gates, primary
inputs and primary
outputs

• Edges represent
wires

• Labels represent
delays

Courtesy K. Keutzer et al. UCB

Note: This is a simplistic view of the
timing graph! A real timing graph will (at
least) have a vertex for each input or
output pin of each gate, and will also
distinguish rise and fall delays.

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 2

A

C

B

f

2

2

2
1

0

.1

0

.2
.2

.2

.1

X

Y
Z

W

.15

.5

1

0

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

• Use a labeled directed graph
• G = <V,E>
• Find the circuit maximum

delay
• Enumerate all paths - choose

the longest?
– How many paths in this

simple graph ?
• 2n

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Block Based STA
• Arrival times (AT) at a node

– Time when signal arrives at the node
– Latest time signal can become stable
– Determined by longest path from source

Puneet Gupta (puneetg@ucla.edu)

Problem Formulation - 3

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

Compute longest path in a graph G = <V,E,delay,Orig in>
// delay is set of labels, Orig in is the super-source of the DAG

Forward-prop(W){
for each vertex v in W

for each edge <v,w> from v
Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed, add w to W
}
Longest path(G){

Forward_prop(Origin) }

0

0

0

0

0

Origin

(Kirkpatrick 1966, IBM JRD)

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

0

0

Origin

0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Convention: Pink numbers represent the
accumulated delay (“actual arrival time”) at
the output of the given node.

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

000

Origin 0

0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

.1

0

Origin

0

0

0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1

2

2

2

Z

0

0

0

.1

0

Origin

0

0

0

2.0

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

.1

0

Origin

1.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

2

Z

0

0

0

.1

0

Origin

1.1

2.2

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

.1

A

.15
.2

.2

1
2

2

Z

0

0

0

.1

0

Origin

1.1

2

3.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

0

0

0

0

0

Origin

1.1

2

3

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

0

0

0

0

0

Origin

1.1

2

5.8

3.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

0

0

0

0

0

Origin

1.1

2

5.8

3.1

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z
0

0

0

0

0

Origin

1.1

2

5.8

3

5.95

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Critical Path (sub-graph)

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z
0

0

0

0

0

Origin

1.1

2

5.8

3

5.95

Compute longest path in a graph G = <V,E,delay,Origin>
 // delay is set of labels, Origin is the super-source of the DAG
Forward-prop(W){
 for each vertex v in W
 for each edge <v,w> from v
 Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))
 if all incoming edges of w have been traversed, add w to W
}
Longest path(G){
 Forward_prop(Origin) }

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

5 min break

Puneet Gupta (puneetg@ucla.edu)

Timing for Optimization: Extra Requirements
• Longest-path algorithm computes arrival times at each

node
• If we have constraints, need to propagate slack to each node

– A measure of how much timing margin exists at each node
– Can optimize a particular branch

• Can trade slack for power, area, robustness

clock
Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Required Arrival Time

• Required arrival time R(v) is the time before which a
signal must arrive to avoid a timing violation

• Then recursively

X

Y

R(Z)
Z

Yxd →

X zd →
R(X)

R(Y)

u
u

R() min (R(u) d)υ→
∈ υ

υ = −
FO()

where {Y,Z} and {X}υ υ FO() = =

Required time is user defined at output:
 setupR(v) = T - T

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Required Time Propagation: Example

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

• Assume required time at output R(f) = 5.80
• Propagate required times backwards

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

5.65

3.45

3.45

0.95

0.45

-0.15

1.45

5.80

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Timing Slack
• From arrival and required time can compute slack.

For each node v:

• Slack reflects criticality of a node
• Positive slack

– Node is not on critical path. Timing constraints met.

• Zero slack
– Node is on critical path. Timing constraints are barely met.

• Negative slack
– There is a timing violation

• Slack distribution is key for timing optimization!

S() R() A()υ = υ − υ

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Timing Slack Computation: Example

• Compute slack at each node

C

B

f

X

Y

W

A

ZOrigin
-0.15

-0.15

0.45

-0.15

0.45

-0.15

1.45

-0.15

S() R() A()υ = υ − υ

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Enhancements to STA

• Incremental timing analysis
– What happens if you change size of one gate ?

• Conservatism
– Multiple inputs switching
– Interference – crosstalk  coupling induce delay
– Nanometer-scale process effects – variation ( probabilistic

timing analysis)
– False paths

• Timing correction driven by STA
– Resize cells
– Buffer nets
– Copy (clone) cells Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

Incremental Timing

C

B

f

X

Y

W

0

.5.1

1

.2

0
0

1

A

.15
.2

.2

1

2
3.6

2

Z

• What needs to be recomputed if gate X is sized up ?
– Delay?
– AT ?
– RT ?

• On a large circuit the difference can be several orders
of magnitude…

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

5.65

3.45

3.45

0.95

0.45

-0.15

1.45

5.80

Courtesy K. Keutzer et al. UCB

Puneet Gupta (puneetg@ucla.edu)

False Paths in STA
• Logical vs. Topological  logic functionality does not matter

• A major (critical) assumption hidden behind STA!
– All paths are sensitizable:

• There always exists a set of inputs that will cause the logic
propagating along any chosen path

• But this is NOT true in general

Puneet Gupta (puneetg@ucla.edu)

False Path Example

• Our previous algorithm will identify the red path as the longest
path!
– Is this path sensitizable?

• Identifying false paths tough: As hard as Boolean Satisfiability (SAT)
problem (NP-hard)
• Several effective heuristics exist
• Designer guidance is also common (set_false_path)

g

a

b

d

e

f

0

0

1

1

c
1

False path of delay 3

1

1

0

Puneet Gupta (puneetg@ucla.edu)

Time borrowing/cycle stealing

• If these two were FFs, we will have a setup violation. Latches
can “borrow” time from previous stage  need to keep track of
time borrowing over many stages in STA

[http://ohotspot.blogspot.com/]

Puneet Gupta (puneetg@ucla.edu)

Capacitive Coupling

• On-chip wires have significant capacitance to adjacent wires
– On the same layer
– On adjacent layers
– Wire under consideration: Victim; other wires with coupling to victim:

aggressor

• Charge injected across Cc results in temporary (in static logic)
glitch in voltage from the supply rail at the victim

W S

Ca CaCv

 Ground Plane

T

 H

Cc Cc Cross-section view

Cc

Cc

 H

T

 Ground Plane

Cv

Ca

Ca

S

W

Puneet Gupta (puneetg@ucla.edu)

Crosstalk: Timing Impact

• A switching victim is sped up by a
coupled aggressor that is switching
in the same direction
– Potential “hold time” violation
– Fixes include adding delay elements

to your path

• A switching victim is hindered
(slowed down) by a coupled
aggressor that is switching in the
opposite direction
– Potential setup time violation
– Fixes include spacing the wires, using

stronger drivers

Aggressor

Victim

Slide courtesy of Paul Rodman, ReShape

Aggressor

Victim

Puneet Gupta (puneetg@ucla.edu)

Capacitive Coupling

• Q = Cc (∆Vv – ∆VA) = charge delivered to coupling capacitor

• A switches but V does not: ∆V = VDD, A sees cap to ground and to B
– “Miller Coupling Factor” (MCF) = 1

• A and V switch in same direction: no voltage change: ∆V = 0, Cadj is effectively
absent
– MCF = 0

• A and V switch in opposite directions: voltage change ∆V = 2VDD, twice as
much charge is required, Cadj is effectively doubled
– MCF = 2

Puneet Gupta (puneetg@ucla.edu)

Crosstalk Delay Calculation: Levels
of Accuracy

• Discard coupling capacitances or ground them
(MCF=0)

• De-coupling by replacing coupling caps by
conservative caps (MCF = 2 for setup; MCF=0
for hold)
– True worst-case can be MCF = 3 for setup and MCF=

-1 for hold
• Why ??

• De-coupling by Miller factors on a per net basis
– MCF depends on aggressor alignment, slews

• More sophisticated (but very slow) methods
– E.g., Simulating multi-input multi-output networks

Aggressor 1

Aggressor 2

alignment

Puneet Gupta (puneetg@ucla.edu)

Calculation Flow
 Timing window overlaps enable crosstalk delay variation

 Chicken-egg situation: delay vs. crosstalk

Aggressor

Victim

∆ delay

overlap

 Iteration
 Starting with the assumption that all

timing windows are overlapped
(pessimistic about the unknowns)

 Refine calculation by reducing
pessimism

Timing window
assumptions Crosstalk delay

calculation

Puneet Gupta (puneetg@ucla.edu)

Scaling of Delay Uncertainty

• Accurate crosstalk delay estimation is vector dependent and (almost)
impossible pessimism and simplifications

• Relatively greater coupling noise due to line dimension scaling
• Tighter timing budgets to achieve fast circuit speed (“all paths critical”)
• Guardbanding of timing analysis by MCF’s (-1 to +3, etc.)

Delay

Noise

Aggressor Victim

Delay Uncertainty

0.35 0.30 0.25 0.20 0.15 0.10
25
30
35
40
45
50
55
60
65
70
75
80
85

∆T
d

/ T
d

(%
)

Technology Generation (μm)

Nominal Delay
Delay Uncertainty

Slide courtesy of Kevin Cao, Berkeley

Puneet Gupta (puneetg@ucla.edu)

Crosstalk From Capacitive Coupling
• Glitches caused by capacitive coupling between wires

– An “aggressor” wire switches
– A “victim” wire is charged or discharged by the coupling capacitance

• An otherwise quiet victim may look like it has temporarily switched
• This is bad if:

– The victim is a clock or asynchronous reset
– The victim is a signal whose value is being latched at that moment

Aggressor

Victim

Slide courtesy of Paul Rodman, ReShape

	�Static Timing Analysis (STA)
	Logistics
	Let’s Revisit Cycle Time and Path Delay
	Cycle Time - Setup Time
	Cycle Time – Clock Skew
	Cycle Time – Flip-Flop Delay (Clock to Q)
	Min Path Delay - Hold Time
	Setup, Hold, Cycle Times
	Summary of Constraints (Edge-Triggered FFs)
	Example of tpdmax Violation
	Example of tpdmin Violation: Race Through
	Timing Analysis for Digital Chips
	Why “Static”
	Approach – Reduce to Combinational
	Gate Delay Models
	Interconnect Delay Model
	Problem Formulation - 1
	Problem Formulation - 2
	Block Based STA
	Problem Formulation - 3
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Algorithm Execution
	Critical Path (sub-graph)
	5 min break
	Timing for Optimization: Extra Requirements
	Required Arrival Time
	Required Time Propagation: Example
	Timing Slack
	Timing Slack Computation: Example
	Enhancements to STA
	Incremental Timing
	False Paths in STA
	False Path Example
	Time borrowing/cycle stealing
	Capacitive Coupling
	Crosstalk: Timing Impact
	Capacitive Coupling
	Crosstalk Delay Calculation: Levels of Accuracy
	Calculation Flow
	Scaling of Delay Uncertainty
	Crosstalk From Capacitive Coupling

