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Logistics

• Some guidelines about grading in ECE201A
– 80%+ : A
– 70%-80% : A-
– 65% - 70%: B+
– 60% - 65%: B
– 50%-60%: B-
– You really shouldn’t be getting below 50%!

• Remember Quiz 1 is next week on Gradescope in class.
• Please post your questions on Piazza regarding anything 

about lectures or labs or project
– Everyone can benefit from responses and easier for us..
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Introduction

ENTITY test is
port a: in bit;
end ENTITY test;

DRC
LVS
ERC

Circuit Design

Functional Design
and Logic Design

Physical Design

Physical Verification
and Signoff

Fabrication

System Specification

Architectural Design

Chip

Packaging and Testing

Chip Planning

Placement

Signal Routing

Partitioning

Timing Closure

Clock Tree Synthesis
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Introduction

GND VDD

Module e

I/O Pads

Block Pins

Block a

Block
b

Block d
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Floorplan

Module d

Module c
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Chip 
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Floorplan Picture 

Modern SoC: 
many memories,
heavy power 
network
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Example
Given: Three blocks with the following potential widths and heights 
Block A: w = 1, h = 4  or  w = 4, h = 1  or  w = 2, h = 2
Block B: w = 1, h = 2  or  w = 2,  h = 1  
Block C: w = 1, h = 3  or  w = 3, h = 1

Task: Floorplan with minimum total area enclosed 

A

A

A

B

B
C

C
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Example
Given: Three blocks with the following potential widths and heights 
Block A: w = 1, h = 4  or  w = 4, h = 1  or  w = 2, h = 2
Block B: w = 1, h = 2  or  w = 2,  h = 1  
Block C: w = 1, h = 3  or  w = 3, h = 1

Task: Floorplan with minimum total area enclosed 

Solution:
Aspect ratios
Block A with w = 2, h = 2;  Block B with w = 2, h = 1;  Block C with w = 1, h = 3

This floorplan has a global bounding box with minimum possible area (9 square units).
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Blocks

data path

RAMstd cell row

blocks

I/O pads

• Blocks are inside a pad frame
–Hard = defined outline = fixed (H,W)
–Soft = defined area, but (H,W) flexible
–Semi-soft = discrete set of (H,W) pairs
–Shapes:  rectangular, L, T, rectilinear
–Pin locations defined
–Can rotate, mirror

• Routing inside, between blocks
–Sometimes, over blocks

• Floorplanning of different-sized blocks is 
harder than place and route of standard 
cells

–Block placement is done by hand
–Issues:  

• access to power supply (power-hungry blocks)
• alignment of power grid to supply pins
• soft blockage / “halo” to ensure routability
• leave contiguous region for std-cell P&R
• buffer sites for nets that want to get around a 

macro
• data flow

Courtesy K. Yang, UCLA 
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Automated Floorplanning
• Area and shape of the global bounding box

– Minimizing the area involves finding (x,y) locations, as well as shapes,
of the individual blocks. 

• Total wirelength
– Long connections between blocks may increase signal propagation delays 

in the design. 
– May make chip-level routing difficult

• Power integrity
– Minimize IR drop  enough power to the blocks

• No automated floorplanning tool has ever made it to “prime time”
– How should a floorplan be represented ?

• Completeness: should be able to represent all possible floorplans
• Efficiency: conversion between representation and actual realization
• Redundancy:  not good to evaluate two floorplans, only to find they are same

– How do we search over the space of feasible floorplan representations?
• Often, simulated annealing is used
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Power Grid Definition During 
Floorplanning

• Which layers are the primary mesh (= thick metal, e.g., M7, 
M8)

• What is the width and pitch of the power rails?
– Depends on peak current draws (e.g., “1 um width per mA”)

• How frequently to tap down from primary mesh to M1 rails
• What is the width and pitch of power rings?
• Choose power routing widths and pitch of via stacks carefully 

to avoid blocking extra routing tracks
– Easy to make the design unroutable
– If a track is blocked, then use the space…

• As soon as can get a quick placement, check IR drop before 
continuing

– All modes including test mode
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Size Estimation in Standard-Cell Blocks
• Why we care:  

– If area is too small:   P&R will not finish or meet timing, will run too long
– Schedule and size inversely related (but, size will win out for high-volume 

production – and everyone hopes that their chip will be high-volume…)
– Performance and size have a complex relationship

• Old rule of thumb (modulo corrections for power, clock, etc.):
• 3LM: Cell utilization 65 percent     
• 4LM: Cell utilization 70 percent
• 5LM: Cell utilization 75 percent
• 6LM: Cell utilization 80 percent

• Metrics for standard-cell blocks
– Low interconnect density  Cell utilization (std-cell area / std-cell row area)
– High interconnect density  Pin density (causes routing hotspots); 

Size

Physical Design
     SchedulePerf

Size
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Slicing Floorplan Representation
• A slicing floorplan can be recursively 

cut in two without cutting any blocks
• A “wheel” is an example of a non-

slicing floorplan

• A slicing floorplan can be 
represented as a binary tree, with 
internal nodes representing slices in 
the floorplan and leaves representing 
blocks.
– Polish Expression (PE):  Post-order (Left, 

right, root) listing of nodes in depth-first 
traversal of binary tree:   ABHCDEHHV 

– For given slicing floorplan, PE not unique 
some redundancy

A

B

C

D

E

1

2
3

4

1 (V)
2 (H) 3 (H)

4 (H)
A B C

D E
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Polish Expressions for Slicing Tree

b

d
a

e

c

f a cb

d

e f

H

V

H

H

V

B+C ∗A D EF∗++

• Bottom up: V → ∗ and  H → +

• Length 2n-1 (n = Number of leaves of the slicing tree)

• Post-order representation of the graph
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Slicing Tree

Slicing floorplan and two possible corresponding slicing 
trees. Remember convention is that left child is bottom 
or left node.

b

d
a

e

c

f a cb

d

e f

H

V

H

H

V

H

V

H

d

c

e f

H

V

ba
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Floorplan Tree with Wheels
Floorplan tree: Tree that represents a hierarchical floorplan

a

b

c

d
e

f

g

h
i

H

H

HH

V

W h i

c d e f ga b
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HH Horizontal division
(objects to the top and bottom)

HV Vertical division
(objects to the left and right)

HW Wheel (4 objects 
cycled around a 
center object)
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Normalized Polish Expressions

16H35V 2H V74H V

# of operands = 4

# of operators = 2

…….. = 7

…….. = 5

 #operands > #operators for any subexpression

 Total length =2n-1

 Permutation of { 1, 2, …, n} and # of operators =n-1

 No consecutive operators of the same type (due to  normalization)

Normalization:  do not allow following slicing trees

H

••• HH •••

H

V

••• VV•••

V
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Simulated Annealing

• Generate an initial solution and evaluate its cost

• Generate a new solution by performing a random move

• Solution is accepted or rejected based on a temperature parameter T

• Higher T indicates higher probability to accept a solution with higher cost

• T slowly decreases to form the finalized solution.

• Boltzmann acceptance criterion:
currsol : current solution   

nextsol: new solution after perturbation

T: current temperature 

r: random number between[0,1) from normal distr.

𝑒𝑒−(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠 −𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 )/𝑇𝑇
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Annealing of Slicing Floorplans

• Chain: HVHVH.... or VHVHV....

• Neighborhood operators (“moves”)
M1: Swap adjacent operands (ignoring chains)
M2: Complement (HV; VH) some chain
M3: Swap an adjacent operand and operator

(can give an invalid NPE, so must check validity of this move)
• Fact: every pair of valid NPE’s is connected by some move sequence 

“reachability” within neighborhood structure
– Initial SA solution:  12V3V…nV

16H35V2HV74HV
Chains

Adapted from D. Pan, EE382V Fall 2008, UT Austin2 31 .... n
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Estimating Cost
• Floorplanning is difficult for at least two reasons

– Blocks have bounded or discrete aspect ratio (AR) = max (H/W, W/H)
– Non-overlapping constraint:  minimum area = minimum “dead space”

• Classical objective function:  C = α∙Area + β∙Wirelength
– Issue: How to estimate WL when pin locations are not known, blockages not 

comprehended, etc.
• 2-pin net
• 3-pin net

Dead space

Discrete sizing

Rotation

Adapted from D. Pan, EE382V Fall 2008, UT Austin
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Realization of Slicing Floorplans
• What is the implied area of a 

slicing tree? 
• Shape function captures set of 

feasible (W, H) pairs for each 
node in slicing tree

• Shape functions can be 
combined recursively (bottom-
up) in slicing tree
– Pick best-area implementation of 

root node
– Maintain k points on each shape 

curve  O(kn) time to compute 
shape function of slicing floorplan

– Can be updated incrementally as 
well 

Adapted from D. Pan, EE382V Fall 2008, UT Austin
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Shape Function of Hard IP

Corner points

5
2

2

5

2 5

2

5

w

h
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Floorplan Sizing

This algorithm finds the minimum floorplan area for a given 
slicing floorplan in  polynomial time. For non-slicing floorplans, 
the problem is NP-hard.

• Construct the shape functions of all individual blocks

• Bottom up: Determine the shape function of the top-level 
floorplan from the shape functions of the individual blocks

• Top down: From the corner point that corresponds to the 
minimum top-level floorplan area, trace back to each block’s 
shape function to find that block’s dimensions and location.
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4

2

2

4

Block B:

Block A: 

5
5

3

3

Step 1:   Construct the shape functions of the blocks

Floorplan Sizing – Example
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4

2

2

4

Block B:

Block A: 

5
5

3

3

Floorplan Sizing – Example
Step 1:   Construct the shape functions of the blocks

2

4

h

6

w2 64

5

3
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4

2

2

4

Block B:

Block A: 

5
5

3

3

Floorplan Sizing – Example
Step 1:   Construct the shape functions of the blocks

2

4

h

w2 64

6

3

5
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4

2

2

4

Block B:

Block A: 

5
5

3

3

w2 6

2

4

h

4

6

hA(w)

Floorplan Sizing – Example
Step 1:   Construct the shape functions of the blocks
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4

2

2

4

Block B:

Block A: 

5
5

3

3

hB(w)

w2 6

2

4

h

4

6

hA(w)

Floorplan Sizing – Example
Step 1:   Construct the shape functions of the blocks
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w2 6

2

4

h

4

6

w2 6

2

4

h

4

6

hB(w)
hA(w)

hB(w)
hA(w)

hC(w)

88

Floorplan Sizing – Example
Step 2:   Determine the shape function of the top-level floorplan (vertical)
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w2 6

2

4

h

4

6

w2 6

2

4

h

4

6

hB(w)
hA(w)

hB(w)
hA(w)

hC(w)

5 x 5

88

Floorplan Sizing – Example
Step 2:   Determine the shape function of the top-level floorplan (vertical)
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4

6

hB(w)
hA(w)

hB(w)
hA(w)

hC(w)

3 x 9

4 x 7

5 x 5

88

Floorplan Sizing – Example
Step 2:   Determine the shape function of the top-level floorplan (vertical)
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6

hB(w)
hA(w)

hB(w)
hA(w)

hC(w)

3 x 9

4 x 7

5 x 5

88

Minimimum top-level floorplan
with vertical composition

Floorplan Sizing – Example
Step 2:   Determine the shape function of the top-level floorplan (vertical)
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w2 6
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4

h

4

6

w2 6

2

4

h

4

6

hA(w)hB(w) hC(w)hA(w)hB(w)

9 x 3

7 x 4

5 x 5

88

Floorplan Sizing – Example
Step 2:   Determine the shape function of the top-level floorplan 
(horizontal)

Minimimum top-level floorplan
with horizontal composition
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Floorplan Sizing – Example
Step 3:   Find the individual blocks’ dimensions and locations

w2 6

2

4

h

4

6

8

(1) Minimum area floorplan: 5 x 5

Horizontal composition
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w2 6

2

4

h

4

6

(1) Minimum area floorplan: 5 x 5

(2) Derived block dimensions : 2 x 4 and 3 x 5

8

Floorplan Sizing – Example
Step 3:   Find the individual blocks’ dimensions and locations

Horizontal composition
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2 x 4 3 x 5

5 x 5

Floorplan Sizing – Example
Step 3:   Find the individual blocks’ dimensions and locations

w2 6

2

4

h

4

6

(1) Minimum area floorplan: 5 x 5

(2) Derived block dimensions : 2 x 4 and 3 x 5

8

Horizontal composition
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2 x 4 3 x 5

5 x 5

Resulting slicing tree
B

V

A
B A

Floorplan Sizing – Example
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5 min break
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Other Floorplan representations: 
Constraint Graph Pair 

Representation of Floorplan

Constraint graphs

Horizontal Constraint Graph

Vertical 
Constraint 
Graph

a

b

c

d
e

f

g

h
i

e

h

i

d
g

b
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t

a

b

h
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g
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d e

t
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Sequence Pair Floorplan 
Representation

• Based on layout partitions by non-
overlapping ascending/descending staircases 

• Coded in two node sequences 
– E.g., CEDFAB for descending staircases or 

negative loci and 
• Start with bottom left corner of each module and 

move up-left and down-right
• Linear ordering of loci is a sequence

– ABCDEF for ascending staircases or positive 
loci

– Sequence pair is (S+, S-) = (ABCDEF , 
CEDFAB)

– (weighted) Longest common subsequence 
(S+, S-) gives height of floorplan

• Lcs(ABCDEF , CEDFAB) = AB or CEF or CDF
– Lcs(S+R, S-) gives width of floorplan

• Lcs(FEDCBA, CEDFAB) = FB or EDB or EDA

• Can represent non-slicing floorplans
• Optimize floorplan by searching over these 

representations

B

C

D E

F

Courtesy K. Yang, UCLA 

A
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Pin Assignment

During pin assignment, all nets (signals) are assigned to unique pin locations 
such that the overall design performance is optimized. 

Example: chip i/o to board i/o:

Pin 
Assignment

90 Pins 90 Pins

90 Connections

90 Pins 90 Pins
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Pin Assignment: Concentric 
Circle Method

• Goal: Assign legal pin locations so that there is no net 
overlap and minimum wirelength

41
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Given: Two sets of pins (1) Determine the circles
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(2) Determine the points

Pin Assignment – Example
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Pin Assignment – Example
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(2) Determine the points
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(3) Determine initial mapping: choose an initial point to point mapping arbitrarily

Pin Assignment – Example
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Pin Assignment – Example

Ko
re

n,
 N

. L
.: 

Pi
n 

As
si

gn
m

en
t i

n 
Au

to
m

at
ed

 P
rin

te
d 

C
irc

ui
t B

oa
rd

s

(3) Determine initial mapping: assign remaining points clockwise or 
counter-clockwise direction



Puneet Gupta (puneet@ee.ucla.edu) 46

Pin Assignment – Example
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(4) optimize the mapping (complete rotation): Repeat initial mapping with 
a different start point mapping. Do this till all point mappings have been 
tried
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(4) Best mapping (shortest Euclidean distance)

Pin Assignment – Example
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Final pin assignment

Pin Assignment – Example
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(4) Best mapping 
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Topological Pin Assignment

• Draw a midpoint line from center of m through B; draw a 
dividing line l’; “unwrap” the pins of B onto line from the 
dividing point (point where midpoint line intersects B farthest 
from m) ; project pins from line to outer circle

m
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B B

m

l’

m

B

m

Pin assignment to an external block B
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Topological Pin Assignment
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55Pin assignment to two external blocks A and B

a

b

lm~a

lm~b

d1

d2 d3

m

m

a1

a2

a3

a4

a5

a6

a7

a8

b1

b2

b3

b4

b5

b6

b7

b8

a

b
a1

a2 a3

a4

a5

a6a7

a8

b1
b2 b3

b4

b5

b6b7

b8
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Power and Ground Routing

Trunks connect rings to each 
other or to top-level power ring

Power and ground rings 
per block or abutted blocks

V GG V

V
V

V
G

G

G
V

V
G

V V VGG G

Power-ground distribution for a chip floorplan
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Power and Ground Routing

Hamiltonian path: shortest path which touches all nodes: split 
the design  left of path used for ground routing tree; right for 
Vdd routing tree

GND VDD

Planar routing: More common 
in analog/custom
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Power and Ground Routing
Planar routing

Step 1: Planarize the topology of the nets
– As both power and ground nets must be routed on one layer, 

the design should be split using the Hamiltonian path 

Step 2: Layer assignment
– Net segments are assigned to appropriate routing layers

Step 3: Determining the widths of the net segments 
– A segment’s width is determined from the sum of the currents 

from all the cells to which it connects 
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Power and Ground Routing
Planar routing

GND VDD

Generating topology of 
the two supply nets

Adjusting widths of the segments with 
regard to their current loads
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Power and Ground Routing
Mesh routing: more common for large digital ICs

Step 1: Creating a ring 
– A ring is constructed to surround the entire core area of the chip, 

and possibly individual blocks. 

Step 2: Connecting I/O pads to the ring
Step 3: Creating a mesh

– A power mesh consists of a set of stripes at defined pitches on two or more 
layers

Step 4: Creating Metal1 rails
Step 5: Connecting the Metal1 rails to the mesh  
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Power and Ground Routing
Mesh routing

Ring Mesh

Connector 

Pad

Power rail
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Power and Ground Routing

Mesh routing

16µ
16µ

16µ

VDD rail

GND rail

Metal1
Via1
Metal2
Via2
Metal3
Via3
Metal4

VDD 
Metal4 mesh

GND 
Metal4 mesh

M1-to-M4 connection 

Metal1
rail

1µ Metal4 mesh

1µ Metal5
mesh

2µ Metal6 mesh

Metal4
Via4
Metal5
Via5
Metal6

M4-to-M6 connection 

Metal6
Via6
Metal7
Via7
Metal8

M6-to-M8 connection 

4µ Metal7
mesh

4µ Metal8 mesh
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Floorplanning Summary
• Traditional floorplanning

– Assumes area estimates for top-level circuit modules 
– Determines shapes and locations of circuit modules 
– Minimizes chip area and length of global interconnect 
– Slicing versus non-slicing

• Representation is key to efficiency and optimality

– Fixed-outline floorplanning
• Chip size is fixed, focus on interconnect optimization 
• Can be applied to individual chip partitions (hierarchically)

• Additional aspects 
– Pin assignment 

• Peripheral I/Os versus area-array I/Os
– Defining channels between blocks for routing and buffering 

– Power and ground routing 
• Planar routing in channels between blocks 
• Can form rings around blocks to increase current supplied and to improve reliability
• Mesh routing 
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