
1

Enhanced Local Branch Predictor Design: Detailed
Methodology, Storage Overhead, and Trade-offs Analysis

Shengyi Wei, Ying Li
Univerisity of California, Los Angeles

shengyiwei@ucla.edu, ying.li@ucla.edu

Abstract—In this paper, we propose a novel branch prediction mecha-
nism that employs both a bimodal table and a pattern history table (PHT),
combined via a Branch History Register (BHR) to enhance prediction
accuracy for conditional branches. The design aims to optimize the
trade-off between prediction accuracy and storage overhead, focusing
on the efficient use of branch history and pattern-based information
for prediction. This configuration achieves a misprediction rate of 5.020
misses per thousand instructions (MPKI) on the CBP-2 training traces.

Index Terms—Branch Predictor, Branch History Register, Pattern
History Table, Bimodal Table

I. INTRODUCTION

BRanch prediction is an essential mechanism within the archi-
tecture of modern superscalar processors, aimed at mitigating

control hazards associated with branch instructions. Inaccurate pre-
dictions can lead to significant performance penalties due to pipeline
stalls and the necessity to flush instructions, thus degrading system
efficiency and increasing execution times [1], [2].

In this study, we have developed a branch predictor that combines
a Branch History Register Table and a Pattern Table to improve
the accuracy of predicting the direction of conditional branches.
Within our design framework, the my_predictor class, a bimodal
predictor is integrated with a local history-based predictor. This
combination leverages both global and local branch history patterns
to enhance prediction accuracy.

Our design incorporates a storage-efficient architecture, utilizing
unlimited storage, achieves a miss prediction rate of 5.020 misses
per thousand instructions (MPKI) on the CBP-2 training traces. This
performance metric underscores the efficacy of our approach in a
realistic simulation environment.

II. DESIGN METHODOLOGY

A. Predictor Components

1) Bimodal Predictor: This component utilizes a direct-mapped
table, BimodalTable, indexed by the branch instruction’s ad-
dress bits. Each table entry consists of a saturating counter that
predicts the likelihood of branch execution (taken or not taken)
based on historical outcomes.

2) Local History Predictor: This component utilizes a Branch
History Register (BHR), this predictor captures the execution
outcomes of the most recent branches. The Pattern Table,
indexed by combinations of branch addresses and BHR values,
stores saturating counters that provide predictions based on
observed patterns in branch behavior.

B. Predictor Integration

The predictor evaluates the outputs from both the bimodal and local
predictors. The decision logic prioritizes the local history prediction
when its confidence level (as determined by the saturating counter
value) is high. In cases of low confidence, the bimodal predictor’s
outcome is used. This integration allows the predictor to dynamically
adapt to varying branch behaviors, enhancing overall prediction
reliability.

Fig. 1. Architecture of Branch Predictor

III. STORAGE OVERHEAD ANALYSIS

The design’s storage requirements are as follows:
• Bimodal Table: 215 entries, each 3 bits wide, amounting to 96

KB.
• Pattern History Table (PHT): 222 entries, each 3 bits, totaling

approximately 12 MB.
• Branch History Table (BHR): 22 entries, each 15 bits, totaling

330 bits.
These numbers reflect a significant consideration of storage versus

performance, where larger tables typically offer better accuracy but
at increased silicon and power costs.

IV. TRADE-OFFS CONSIDERATION

A. Accuracy v.s. Storage

The design confronts the classic trade-off between accuracy and
storage. The extensive use of a large PHT aims to maximize accuracy
but incurs significant memory overhead. Conversely, the smaller BHR
and bimodal table help limit the storage requirements while providing
a baseline accuracy that is competitive.

B. Computational Complexity

The predictor’s performance is also influenced by its computational
complexity, primarily dictated by the hash functions used for index-



2

ing and the logic to manage multiple prediction mechanisms. The
implementation ensures that these computations are efficient enough
to maintain high clock speeds in processor pipelines.

C. Adaptability

The dual mechanism allows the predictor to be highly adaptable to
various application behaviors, dynamically adjusting its predictions
based on recent execution histories and long-term patterns, thus
effectively managing the inherent variability in program control flows.

V. CONCLUSION

The my_predictor branch predictor represents a sophisticated
approach designed to address the nuanced demands of contemporary
CPU architectures. By balancing the trade-offs between accuracy,
storage overhead, and computational complexity, this design provides
a robust solution aimed at reducing branch misprediction rates and
thereby enhancing overall processor performance. Future work will
focus on further optimizing these trade-offs through algorithmic
advancements and hardware implementation techniques.

REFERENCES

[1] James E Smith. A study of branch prediction strategies. In 25 years of
the international symposia on Computer architecture (selected papers),
pages 202–215, 1998.

[2] Tse-Yu Yeh and Yale N Patt. Alternative implementations of two-level
adaptive branch prediction. ACM SIGARCH Computer Architecture News,
20(2):124–134, 1992.


	Introduction
	Design Methodology
	Predictor Components
	Predictor Integration

	Storage Overhead Analysis
	Trade-offs Consideration
	Accuracy v.s. Storage
	Computational Complexity
	Adaptability

	Conclusion
	References

