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Introduction 
This lab will focus on modeling distributed inference. More specifically, you will 
calculate the total inference latency and communication traffic for a 4-layer CNN 
distributed across a 4-node machine, utilizing tensor and pipeline parallelism. 

Background 

Distributed Inference 
Distributed inference involves distributing a neural network model across multiple 
compute nodes to handle inference tasks. This approach can significantly reduce 
the memory requirement of each node or increase the overall throughput.  It is 
particularly useful for handling large models or large volumes of input data that 
cannot be processed efficiently on a single machine. 

For this exercise, we will focus on tensor and pipeline parallelism, which are two 
parallelization techniques that can reduce the memory requirement during 
inference. These two methods are especially useful for today’s LLMs where the 
models are often way larger than the DRAM size of a single GPU/compute node.  

 

Tensor Parallelism 
Tensor parallelism is a technique where the computation of tensors 
(multidimensional arrays used in neural networks) is divided across different 
processors or nodes. This type of parallelism involves splitting the model’s layers or 
the data tensors themselves, allowing different parts of a computation to be 
executed simultaneously on different hardware units. The main goal is to speed up 
processing by utilizing the computational power of multiple nodes concurrently. In 
this exercise, tensor parallelism means to split the computation of each layer 
across all nodes. 



 

Pipeline Parallelism 
Pipeline parallelism involves dividing the model into different segments or stages, 
each of which is processed on a separate node. Data flows sequentially from one 
stage (node) to the next, much like an assembly line in a factory. Each node 
processes a different part of the model, and as soon as it finishes processing one 
batch of data, it passes it to the next stage while simultaneously working on the next 
batch. This method aims to maximize hardware utilization by continuously feeding 
data through the model's pipeline, reducing idle times and improving throughput. In 
this exercise, pipeline parallelism means each node will process a unique 
convolution layer. 

 

Problem setup 

The model 
While usually distributed inference are applied for large models such as LLMs, to 
reduce the complexity, we will use a relatively small CNN model which I think you 
should be pretty familiar with at this point.  

The model that will be used in this exercise is provided in the table below, which 
contains 4 layers. Initial inputs have dimension 3x32x32, and the activation 
dimension is reduced by 2 on each x/y dimension because of convolution. FP16 (16-
bit per weight) will be used as the precision for this model.  

Layer ID Weight Dimension (# filter, # 
in_channel, fx, fy) 

Input activation dimension 

1 128,3,3,3 32,32 
2 128,128,3,3 30,30 
3 128,128,3,3 28,28 
4 128,128,3,3 26,26 

 

The hardware 
 



 

The hardware for this exercise is a multi-node compute system with 4 compute 
nodes. You can imagine each compute node is similar to the design of Project 1 part 
2.  

Each compute node contains a 512 KB on-chip SRAM, and there is no DRAM in the 
entire system, which means all the weights and activations need to be stored in the 
SRAM of the nodes.  

All-to-all network is adopted for this hardware, where each compute node is 
connected to all other three through dedicated links as shown in the diagram. So 
each node has three output links and three input links. 

In this problem, you will treat each compute node as a black box, you don’t need to 
know nor model the details within it. The compute throughput will be provided and 
you can use that for latency calculations. 

System specifications 

Compute throughput per node: 50 GOPS (giga operations per second) 

Communication bandwidth per link: 2 GB/s (Note there are 12 links in total) 



Notes and assumptions 

• You can calculate the latency of executing a given number of operations 
(remember 1 MAC = 2 OPS) with a single node simply by dividing it with the 
compute throughput per node provided.  

• For tensor parallelism, the model is distributed in a way that for each layer, 
all the filters are evenly distributed across the nodes. 

• For pipeline parallelism, each layer is stored and computed in a separate 
node.    

• For both cases, the final network output needs to be stored in a single node, 
but it can be any node as long as the output is complete.  

• You can imagine the initial inputs are already in the SRAM. 
• You can ignore basically all overhead except for computation and 

communication between the nodes.  

 

Objectives 
1. For a single input, calculate the total latency as well as the total 

communication traffic (in bytes) between nodes for both parallelization 
methods. The total latency is defined as the time needed to process the 
entire neural network for this input. The total communication traffic is 
defined as the accumulated traffic of all links throughout the execution. How 
do the results compare between the two methods? 

2. Repeat the latency and total network traffic calculation for a total of 32 
inputs, processed one by one. Here latency means total time required to fully 
compute all 32 inputs. 

3. Report-only (no codes needed): Do you know why we have to distribute the 
inference across the nodes in this problem? Can we do data parallelism for 
the 32 inputs case (which means each node has full weights and processes a 
subset of total inputs)?  

4. Report-only (no codes needed): what could happen to the total 
communication latency for the tensor and pipeline parallelism if the network 
structure is changed to ring topology  (4 links total)? You don’t need to 
provide simulation results, some qualitative analysis is good enough.  

 

Hints: 



• For tensor parallelism, since filters are evenly distributed across the nodes 
for every layer, each node only has a partial output after executing a layer.  

• For pipeline parallelism, each node processes a single layer, and layers have 
dependencies, so… 

Deliverables 
Code: Submit a single python script named as lab3.py, which should print out the 
results for both questions like shown below: 

 

The code should still be packed into a tarball before submission, named as 
UID_Lastname_Firstname_Lab3_pinXXXX.tar.gz  

Submit the tarball to ‘/w/class.1/ee/ee209w/ee209wt2/submission/project3/’. 

Please follow the submission instructions from Lab 1 for full instructions and 
examples. 

Report: Submit a 4–6 page report in the form of slides to gradescope, summarizing 
your approach, results, analysis, and answers.    
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