
209AS Lab3
Due date: Jun 12th

Ver 1.0

Introduction
This lab will focus on modeling distributed inference. More specifically, you will
calculate the total inference latency and communication traffic for a 4-layer CNN
distributed across a 4-node machine, utilizing tensor and pipeline parallelism.

Background

Distributed Inference
Distributed inference involves distributing a neural network model across multiple
compute nodes to handle inference tasks. This approach can significantly reduce
the memory requirement of each node or increase the overall throughput. It is
particularly useful for handling large models or large volumes of input data that
cannot be processed efficiently on a single machine.

For this exercise, we will focus on tensor and pipeline parallelism, which are two
parallelization techniques that can reduce the memory requirement during
inference. These two methods are especially useful for today’s LLMs where the
models are often way larger than the DRAM size of a single GPU/compute node.

Tensor Parallelism
Tensor parallelism is a technique where the computation of tensors
(multidimensional arrays used in neural networks) is divided across different
processors or nodes. This type of parallelism involves splitting the model’s layers or
the data tensors themselves, allowing different parts of a computation to be
executed simultaneously on different hardware units. The main goal is to speed up
processing by utilizing the computational power of multiple nodes concurrently. In
this exercise, tensor parallelism means to split the computation of each layer
across all nodes.

Pipeline Parallelism
Pipeline parallelism involves dividing the model into different segments or stages,
each of which is processed on a separate node. Data flows sequentially from one
stage (node) to the next, much like an assembly line in a factory. Each node
processes a different part of the model, and as soon as it finishes processing one
batch of data, it passes it to the next stage while simultaneously working on the next
batch. This method aims to maximize hardware utilization by continuously feeding
data through the model's pipeline, reducing idle times and improving throughput. In
this exercise, pipeline parallelism means each node will process a unique
convolution layer.

Problem setup

The model
While usually distributed inference are applied for large models such as LLMs, to
reduce the complexity, we will use a relatively small CNN model which I think you
should be pretty familiar with at this point.

The model that will be used in this exercise is provided in the table below, which
contains 4 layers. Initial inputs have dimension 3x32x32, and the activation
dimension is reduced by 2 on each x/y dimension because of convolution. FP16 (16-
bit per weight) will be used as the precision for this model.

Layer ID Weight Dimension (# filter, #
in_channel, fx, fy)

Input activation dimension

1 128,3,3,3 32,32
2 128,128,3,3 30,30
3 128,128,3,3 28,28
4 128,128,3,3 26,26

The hardware

The hardware for this exercise is a multi-node compute system with 4 compute
nodes. You can imagine each compute node is similar to the design of Project 1 part
2.

Each compute node contains a 512 KB on-chip SRAM, and there is no DRAM in the
entire system, which means all the weights and activations need to be stored in the
SRAM of the nodes.

All-to-all network is adopted for this hardware, where each compute node is
connected to all other three through dedicated links as shown in the diagram. So
each node has three output links and three input links.

In this problem, you will treat each compute node as a black box, you don’t need to
know nor model the details within it. The compute throughput will be provided and
you can use that for latency calculations.

System specifications

Compute throughput per node: 50 GOPS (giga operations per second)

Communication bandwidth per link: 2 GB/s (Note there are 12 links in total)

Notes and assumptions

• You can calculate the latency of executing a given number of operations
(remember 1 MAC = 2 OPS) with a single node simply by dividing it with the
compute throughput per node provided.

• For tensor parallelism, the model is distributed in a way that for each layer,
all the filters are evenly distributed across the nodes.

• For pipeline parallelism, each layer is stored and computed in a separate
node.

• For both cases, the final network output needs to be stored in a single node,
but it can be any node as long as the output is complete.

• You can imagine the initial inputs are already in the SRAM.
• You can ignore basically all overhead except for computation and

communication between the nodes.

Objectives
1. For a single input, calculate the total latency as well as the total

communication traffic (in bytes) between nodes for both parallelization
methods. The total latency is defined as the time needed to process the
entire neural network for this input. The total communication traffic is
defined as the accumulated traffic of all links throughout the execution. How
do the results compare between the two methods?

2. Repeat the latency and total network traffic calculation for a total of 32
inputs, processed one by one. Here latency means total time required to fully
compute all 32 inputs.

3. Report-only (no codes needed): Do you know why we have to distribute the
inference across the nodes in this problem? Can we do data parallelism for
the 32 inputs case (which means each node has full weights and processes a
subset of total inputs)?

4. Report-only (no codes needed): what could happen to the total
communication latency for the tensor and pipeline parallelism if the network
structure is changed to ring topology (4 links total)? You don’t need to
provide simulation results, some qualitative analysis is good enough.

Hints:

• For tensor parallelism, since filters are evenly distributed across the nodes
for every layer, each node only has a partial output after executing a layer.

• For pipeline parallelism, each node processes a single layer, and layers have
dependencies, so…

Deliverables
Code: Submit a single python script named as lab3.py, which should print out the
results for both questions like shown below:

The code should still be packed into a tarball before submission, named as
UID_Lastname_Firstname_Lab3_pinXXXX.tar.gz

Submit the tarball to ‘/w/class.1/ee/ee209w/ee209wt2/submission/project3/’.

Please follow the submission instructions from Lab 1 for full instructions and
examples.

Report: Submit a 4–6 page report in the form of slides to gradescope, summarizing
your approach, results, analysis, and answers.

	209AS Lab3
	Introduction
	Background
	Distributed Inference
	Tensor Parallelism
	Pipeline Parallelism

	Problem setup
	The model
	The hardware

	Objectives
	Deliverables

