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Parallel Execution (or Training) of Large NNs

• Why do it ?
• Model too large to fit on the DRAM on single accelerator node

• Recall that training requires more memory with backprop: need to store all gradients, all 
activations and all weights 

• E.g., A100 GPU memory < 80GB. GPT3 inference~ 700GB memory!; GPT3 training would be 
2TB+!

• To speed up execution
• More compute and memory BW available across multiple nodes

• How to do it ? Two basic ways:
• Divide up the data, keep a copy of the model everywhere Data parallelism
• Divide up the model, keep a copy of the data everywhere Model parallelism
• Can mix the two…
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Collectives in Distributed ML
• Communication patterns between accelerator nodes

• Several libraries to implement efficiently: Nvidia NCCL,  Intel OneCCL, Blink, Xilinx ACCL, MS CCL….
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Broadcast Reduce. f is the associative 
operator (e.g., sum, min, 
max) and α is the result of 
the reduction.

Allreduce. Result of a 
reduce distributed to all 
processing units

Gather All Gather

Scatter (not same 
as broadcast) All-to-All

Collective operation - Wikipedia

Reduce-Scatter

All Reduce = Reduce-
Scatter + All-Gather

https://en.wikipedia.org/wiki/Collective_operation


Data Parallelism

• Approach
1. Partition training data into batches
2. Compute the gradients of each batch on a GPU
3. Aggregate gradients across GPUs

• Each GPU saves a replica of the entire model  Cannot train large models 
that exceed GPU device memory
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Gathering Gradients: All Reduce

• Naieve approach: exchange gradients between 
every pair  6x4x2 = 48 values over the network

• Other approaches possible
• E.g., have a driver node  3 x 4 x 2 = 24 values over 

network but one bottleneck node
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Visual intuition on ring-
Allreduce for distributed Deep 
Learning | by Edir Garcia Lazo 
| Towards Data Science

https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da
https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da
https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da


Ring All reduce
1. Share part of the gradients to 

ring-neighbor
2. Reduce (add) and share reduced 

result with neighbor
3. Repeat till fully reduced partial 

gradient set is there at every 
node

4. Share gradients without 
reduction in ring

• #Share-reduce cycles = #share only 
cycles = 4 -1 = 3;

• # values sent per node per cycle = 1
• Total values = 2 x 3 x 1 x 4 = 24
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Model Parallelism

• Divide the model across machines and replicate the data.
• Supports large models and activations
• Requires communication within single evaluation
• Splitting model for balances workload across GPUs is challenging
• Data placement across multiple GPUs so that network communication latency is 

minimized is hard as well
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Tensor/Kernel Parallelism Strategies

• Partition parameters/gradients within a layer
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Pipeline/Layer Parallelism
• Divide model by layers. Each 

node takes care of one layer
• Naively bad underutilization 

• E.g., GPU0 waits for gradients for 
layer 1 to flow back

• Divide mini-batch into micro-
batches and pipeline the micro-
batch execution to reduce 
pipeline stalls.

Puneet Gupta ECE209AS Paradigms of Parallelism | Colossal-AI (colossalai.org)

https://colossalai.org/docs/concepts/paradigms_of_parallelism/
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the Cloud, the Edge and End Devices," 2017 IEEE 37th International Conference on 
Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 2017, pp. 328-339, doi: 
10.1109/ICDCS.2017.226. 
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• Yin, Shihui, et al. "XNOR-SRAM: In-memory computing SRAM macro for binary/ternary 
deep neural networks." IEEE Journal of Solid-State Circuits 55.6 (2020): 1733-1743.

• Shafiee, Ali, et al. "ISAAC: A convolutional neural network accelerator with in-situ analog 
arithmetic in crossbars." ACM SIGARCH Computer Architecture News 44.3 (2016): 14-26.

• Davies, Mike, et al. "Loihi: A neuromorphic manycore processor with on-chip 
learning." Ieee Micro 38.1 (2018): 82-99.
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