
Lecture 1: Introduction
Puneet Gupta

Some slides from Lei He

What does this course plan to cover ?

• Part I: Introduction to Neural Networks, operators, dataflows and
exemplar ML accelerator architectures. (3 weeks)

• Part II: Neural network compression (2.5 weeks)
• Part III: Model training (distributed training, hardware-aware training,

etc) (2 weeks)
• Part IV: Emerging computing models for AI (2.5 weeks)

• “TA”: Shurui Li
• We will be using Piazza and Gradescope

What this course is NOT

• Not a ML software/algorithms class (though we will briefly talk about it)
• Not a computer architecture class (though we will briefly talk about it in

context of ML)
• Not a circuits class (though we will be assessing ML from a circuit

standpoint)
• Focus is on ML-hardware interactions
• Expected background:

• ECE216A or ECE201A or equivalent
• Familiarity with Python and Pytorch/TensorFlow
• Familiarity with Machine learning/neural networks (e.g., ECEM147)
• ECEM116C (Computer Architecture) or equivalent

Grading
• Project 1 on NN operator synthesis tradeoffs: 25% (Verilog + SP&R)
• Project 2 on network compression: 25%
• Project 3 on hardware impact modeling of distributed training: 25%
• Paper presentations: 25%

• 15+5= 20 minutes per presentation
• 3 presentations per lecture starting week 2
• Select a paper from an assigned reading list for every Part.
• Student to week assignment: done randomly

• Projects in groups of two. Paper presentations individual.
• Solo project bonus: 2% per project.

• Grading policy:
• 90%+: A+
• 80%+: A
• 75%+: A-
• 70%+: B+
• 65%+: B
• 60%+: B-

PTEs/ Class Enrollment

• Please make sure you have the requisite background
• Please take the pre-requisite quiz

• Class is oversubscribed
• PTE policy:

• Ph.D. students with needed background: get a PTE
• M.S. students:

• CES strongly preferred
• Must know Verilog and Python (no exceptions)
• Must have taken at least an undergraduate class in ML
• Do not ask for a PTE unless you have taken most if not all suggested background classes

(201A/216A/M147/M116C)

The Bigger Picture

Artificial Intelligence

Machine Learning

Neural Networks

Deep
Learning

Spiking
Neural

Networks

• AI: intelligent machines that behave like
humans

• ML: computers that can “learn” without
being explicitly “programmed” to do
certain tasks

• NNs: Brain-inspired computational
networks to do
decision/classification/regression/generat
ion tasks

• Spiking networks: special class of NNs
where nodes integrate and fire
asynchronously

• Deep learning: basis of modern ML where
large, deep NNs are “trained” to do tasks

A Perceptron

• A typical decision problem = perceptron

• Here “activation” function would be a step
function (not really used anymore)

• Can extend to a multi-layer perceptron
(MLP) neural network

• A fully connected NN
• Training a NN:

• Figure out weights using optimization and a
dataset of inputs

• Inference:
• Use trained weights with new inputs

Training a Neural Network

• Define a “loss” function (i.e., error of the neural network)
• Mean square error

• Cross-entropy loss

• Use gradient descent to optimize the weights
• Calculate partial derivatives

• On a single input sample or a “batch” of input samples averaged
• Backpropagation (leverage calculus chain rule) to efficiently calculate the derivatives

• Update the weights
• Iterate to minimize Loss
• Wide variety of efficient algorithm implementations in ML frameworks such as

Pytorch, TensorFlow, etc

Common Layer Types in a DNN

• Fully connected or FC layer (essentially a perceptron-like layer)
• Convolutional or CONV layer (1D/2D/3D filtering operations)
• Activation layer (provides the non-linearity)
• Pooling layer (downsampling number of outputs to the next layer by combining

them)
• Normalization layer (to make sure inputs to next layer are normalized in

magnitude)
• Residual layer (adds skip forward connections)
• Recurrent layer (provide memory; output depends on a previous output)
• Deconvolution layer (used to upsample)
• Attention layer (used to “focus” on a specific region in transformer networks)

FC Layers

• All values in a kernel have connections to all
values in the feature map

• Single neuron:
• A vector-vector dot-product

• A full layer (multiple neurons)
• A vector-matrix multiply (VMM)
• If there are m inputs and n outputs in a hidden

layer, a fully connected layer would require
O(mn) operations to compute the output.

• Note: every weight is multiplied to exactly
one input!  no “reuse” of weight

• Imagine a CIFAR10 image dataset
• Input 32x32x3 = 3072  3072 weight values

need per neuron just for input layer  quickly
becomes untenable due to memory
requirements

5

×

𝑊𝑊

1d case

2d case
1

× = 1

𝑊𝑊

1

5

5

100

10

10

Flatten

100

100 = 1

100

Quick question

• A FC layer with m inputs and n outputs
• What is the total # parameters ?
• What is the total # of multiply-accumulate (MAC) operations done ?

CONV Layers
• Convolve the filter with the feature map

• “slide over the image spatially, computing dot
products”

• Filters are usually “3D” but the z (channel)
dimension is collapsed using a 3D dot product

• Typically edges of input are “padded” (e.g., with
zeroes)

• CONV layers need far fewer parameters to
process same number of inputs

• Filter size is much smaller (e.g., 5x5) than the input
size (e.g., 200x200)  Every weight is “reused”
several times (= number of outputs)

• If each of n outputs is connected to only k inputs
(w x h x d =k) then the layer would require O (kn)
operations to compute the output.

image with padding size = 1

slide window with stride = 1

slide window with stride = 2

convolution result

𝐻𝐻I

𝑊𝑊k

𝐻𝐻k
𝑊𝑊

𝐼𝐼

Quick questions

• A CONV layer with a n x n input and one k x k filter with stride 1
• What will be the size of output if there is no padding ? With padding ?
• What is the total number of trainable parameters ?
• What is the total number of MACs (in the padding case) needed to compute

all outputs ?

Multi-layer CONV structure
• Number of filters in current layers become

number of input channels in the next layer
• Small filters  less memory, less compute  3x3

filters are very popular
• How to get a large receptive field with small filter

?
• Use more CONV layers
• Other techniques such as dilated CONV

• “Im2Col” converts the CONV operation into a
VMM

• More input storage memory but far better
parallelization

• Other ways of doing CONV
• Explicit sliding window
• FFT
• Winograd transform
• Most software libraries will pick the best

implementation depending on input/filter size.
[Different implementations of the ubiquitous convolution | by Sundar Raman P | Medium]

https://medium.com/@sundarramanp2000/different-implementations-of-the-ubiquitous-convolution-6a9269dbe77f

High Dimensional CONV Processing

• Inputs/filter have many channels (z
dimension), as high as 256 for some
layers

• A CONV layer will have many filters
• #filters = #output channels

• Input may have a “batch size” > 1 
multiple output feature maps are
created.

• A FC layer is essentially a CONV layer
with filter dimensions same as input
dimensions

H
h

w

d

input feature map

output fmapDfilter

W

… ……

h
w

h
w

C
d

d
H

D

H

W

D

W

[Sze, NeurIPS’19]

Pooling/Downsampling

• Provide an approach to down sample
feature maps by summarizing the
presence of features in patches of the
feature map.

• Two common approaches
• Max-pool: subsampling by picking the largest
• Average-pool: subsampling by computing

the mean

Quick questions

• A CONV layer with 100 5x5x3 filters, 20x20x3 input feature map
(assume padding) followed by a 2x2 max pool layer

• What is the size and shape of the output ?

5 min break

Common Activation Functions

• Recall: f(output) = activation  goes to
the next layer in the NN

• Key to make the network non-linear.
• Otherwise no difference from linear

regression!
• ReLU is strictly not differentiable at 0 but

its derivative assumed to be 0 at 0 (not a
big issue)

• ReLU is very popular
• Simple and fast to calculate derivative
• Results in sparse, positive only activations

which can help in hardware acceleration

Other layer types
• Residual block (used in ResNet): allows deeper

networks to train better
• Recurrent layer: usually used for temporal inputs

(e.g., natural language processing)
• Have “memory”: take information from prior inputs to

influence the current input and output.
• Attention layers: used in transformer models
• Batch normalization:

• To improve training process by keeping inputs to all
layers similarly distributed

• Softmax classification:

• an activation function that scales numbers into
probabilities

Application: Classification from
Cat, dog, bird, human, sheep

Heart of ML Compute: GEMM

• GEMM: General Matrix to Matrix
Multiply

• Each filter operation can be
mapped to a VMM  multiple
filters or multiple inputs (batch size
> 1)  GEMM

• GEMM works for CONV, FC,
Attention, Recurrent, etc most
layers

• CONV requires reshaping (Im2col)
• Note that the input data is repeated

• Most ML accelerators and software
try to speed up GEMM

Filters Input fmaps

×

Output
fmaps

=…

Filters input fmaps output fmaps

…

[Sze, ISCA’19]

Quick question

• A CONV layer with 100 5x5x3 filters, 20x20x3 input feature map
(assume padding)

• What is the size of GEMM to be done ?

Example DNN: VGG16

• Total 138M parameters [[1409.1556v6] Very Deep Convolutional Networks for Large-Scale Image Recognition (arxiv.org)]

VGG Very Deep Convolutional Networks (VGGNet) - What you need to know - viso.ai

https://arxiv.org/abs/1409.1556v6
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/

Types of Deep Learning

• Supervised Learning:
• learning a function that maps an input to an output from datasets consisting of input-output

pairs
• Example: prediction of house price based on location

• Unsupervised Learning:
• … input data without labeled responses.
• Example: recommend channels based on history

• Semi-supervised Learning
• … a small amount of labeled data with a large amount of unlabeled data
• Example: detection of CAR from photos with a few labels

• Reinforcement Learning
• learning in an interactive environment using feedback from its own actions and experiences
• Example: game AI

Model architectures
• Convolutional Neural Network (CNN):

• feed-forward structure consists of a stack of layers

• Recurrent Neural Network (RNN):
• transform an input sequence into an output sequence

• Transformers:
• Input to output sequence. Leverage “attention” module

• Autoencoder:
• learn a low-dimensional representation of a high-dimensional data set

• Generative Adversarial Network (GAN):
• consist of two (CNN) models competing against each other in a two-player game framework
• create new fake data by learning through the real data

CNN RNN GANAutoencoder

Example: An Autoencoder
• Two NNs: encoder generating a compressed ”latent

code” so that reconstruction loss is minimized
• The latent code can serve as a reduced dimension

representation (similar to PCA)
• Generative Adversarial Networks (GANs) use to the

encoder component but with a different loss
function

• To generate “realistic” fake inputs
• Related concept: “embedding layers”: maps input

information from a high-dimensional to a lower-
dimensional space

• Encoders can generate an embedding (of an image, text,
graph, …)

• Embedding can be as simple as a one-hot encoding of
words in a vocabulary

[Autoencoders – ScienceDirect]

https://www.sciencedirect.com/science/article/pii/B9780128157398000110

A Full Cycle of DL in Practice

• Training:
• Data Cleaning
• Data Input
• Forward Computation
• Loss Calculation
• Backward Computation
• Parameter Update
• Converge Check / Stop Criteria
• Save Model (Parameters)

• Testing/Inference:
• Data Cleaning
• Data Input
• Load Saved Model
• Forward Computation
• Results Interpretation

Common Computer Vision Datasets

• MNIST (1998)
• scans of handwritten digits and associated labels describing which digit 0–9

is contained in each 28x28 image.
• The training set contains 60000 examples, and the test set 10000 examples.
• A simple dataset by modern standards

• CIFAR10 (2009)
• 60000 32x32 color images in 10 classes, with 6000 images per class.
• 50000 training images and 10000 test images.
• Has a 100 class CIFAR100 variant

• IMAGENET (2014)
• ~14 million labeled images, 20k classes
• Average image size 469x387 usually downsampled to 224x224
• Images gathered from Internet
• Human labels via Amazon MTurk

Logistics

• Make sure your BruinLearn, Gradescope, Piazza accounts are all set
up.

• Use Piazza for any questions. No direct emails please.
• Make sure your account on SEAS machines is setup to use Matlab,

Cadence, Python
• Set up account on Google Colab

• We will use this for ML software projects
• Expect hiccups!

• First time teaching this class.
• All projects are new and setup from scratch.
• I apologize upfront for any issues throughout the quarter

How to present a research paper ?
• What problem are they solving ?
• Why is it an important problem (or if you think it is not, why not) ?
• What are the key ideas to the approach ?

• Explain without equations, nitty gritty details..
• Briefly: what is the experimental setup ?

• Is it reasonable ?
• What do they compare against ?

• What did you think of the paper ?
• Obvious problems ?
• Good nuggets ?

• Do not just copy paste figures/tables/charts from the paper unless they are clear and explain
things well. You may need to redraw some figures.

• Figures and charts are much better in slides than text and tables
• Spell, grammar check your slides
• Do NOT use long paragraphs in slides!
• 15 minutes  < 15 slides

Papers for Week 2

• Lecture 3
1. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep

convolutional neural networks." Advances in neural information processing systems 25 (2012).
2. Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision

applications." arXiv preprint arXiv:1704.04861 (2017).
3. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016.
• Lecture 4

1. Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing
systems 30 (2017).

2. Jorda, Marc, Pedro Valero-Lara, and Antonio J. Pena. "Performance evaluation of cudnn
convolution algorithms on nvidia volta gpus." IEEE Access 7 (2019): 70461-70473.

3. Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. "Using dataflow to optimize energy efficiency of
deep neural network accelerators." IEEE Micro 37.3 (2017): 12-21.

• Paper-student assignment will be posted on Piazza.
• NOT in alphabetical order
• No requests for delays/change would be entertained unless medical reasons

	Lecture 1: Introduction
	What does this course plan to cover ?
	What this course is NOT
	Grading
	PTEs/ Class Enrollment	
	The Bigger Picture
	A Perceptron
	Training a Neural Network
	Common Layer Types in a DNN
	FC Layers
	Quick question
	CONV Layers
	Quick questions
	Multi-layer CONV structure
	High Dimensional CONV Processing
	Pooling/Downsampling
	Quick questions
	5 min break
	Common Activation Functions
	Other layer types
	Heart of ML Compute: GEMM	
	Quick question	
	Example DNN: VGG16
	Types of Deep Learning
	Model architectures
	Example: An Autoencoder
	A Full Cycle of DL in Practice
	Common Computer Vision Datasets
	Logistics
	How to present a research paper ?
	Papers for Week 2

