
Types of Deep Learning

• Supervised Learning:
• learning a function that maps an input to an output from datasets consisting of input-output 

pairs
• Example: prediction of house price based on location

• Unsupervised Learning:
• … input data without labeled responses.
• Example: recommend channels based on history

• Semi-supervised Learning
• … a small amount of labeled data with a large amount of unlabeled data
• Example: detection of CAR from photos with a few labels

• Reinforcement Learning
• learning in an interactive environment using feedback from its own actions and experiences
• Example: game AI



Model architectures
• Convolutional Neural Network (CNN):

• feed-forward structure consists of a stack of layers

• Recurrent Neural Network (RNN):
• transform an input sequence into an output sequence

• Transformers:
• Input to output sequence. Leverage “attention” module

• Autoencoder:
• learn a low-dimensional representation of a high-dimensional data set

• Generative Adversarial Network (GAN):
• consist of two (CNN) models competing against each other in a two-player game framework
• create new fake data by learning through the real data

CNN RNN GANAutoencoder



Example: An Autoencoder
• Two NNs: encoder generating a compressed ”latent 

code” so that reconstruction loss is minimized
• The latent code can serve as a reduced dimension 

representation (similar to PCA)
• Generative Adversarial Networks (GANs) use to  the 

encoder component but with a different loss 
function

• To generate “realistic” fake inputs
• Related concept: “embedding layers”: maps input 

information from a high-dimensional to a lower-
dimensional space

• Encoders can generate an embedding (of an image, text, 
graph, …)

• Embedding can be as simple as a one-hot encoding of 
words in a vocabulary

[Autoencoders – ScienceDirect]

https://www.sciencedirect.com/science/article/pii/B9780128157398000110


A Full Cycle of DL in Practice

• Training:
• Data Cleaning
• Data Input
• Forward Computation
• Loss Calculation
• Backward Computation
• Parameter Update
• Converge Check / Stop Criteria
• Save Model (Parameters)

• Testing/Inference:
• Data Cleaning
• Data Input
• Load Saved Model
• Forward Computation
• Results Interpretation



Common Computer Vision Datasets

• MNIST (1998)
• scans of handwritten digits and associated labels describing which digit 0–9 

is contained in each 28x28 image.
• The training set contains 60000 examples, and the test set 10000 examples.
• A trivial dataset by modern standards

• CIFAR10 (2009)
• 60000 32x32 color images in 10 classes, with 6000 images per class.
• 50000 training images and 10000 test images.
• Has a 100 class CIFAR100 variant

• IMAGENET (2014)
• ~14 million labeled images, 20k classes
• Average image size 469x387 usually downsampled to 224x224
• Images gathered from Internet
• Human labels via Amazon MTurk



Lecture 2: Dataflows
Puneet Gupta

Some slides from Lei He



A Simple NN Hardware Concept

• Main memory access is “expensive” compared to local buffer access
• Large size, further away
• Similar to a cache argument
want to reuse values in local buffers as much as possible before sending them back to main 
memory (similar to cache hit rate)

• Local buffers limited in size, so cant keep everything!

(Large) Main 
Memory

(Small) Local
Buffers

×

Single MAC

Weights

Inputs

Partial Sums

[Krishna]

Single MAC  long dot product is 
computed by reading partial sums and 
adding a new multiplication result to 
compute the next partial sum

Lets assume a MAC takes a cycle



Simple 1D CONV Example

• How often is a new input read ?
• How often is a new weight read ?
• How often is a new output read ?
• Output changes the least  output “stationary” 

dataflow
• What is the size of buffer needed so that everything 

is read from main memory exactly once ?
• Inputs: 
• Weights: 
• Outputs: 

• How many times is the buffer read?
• For inputs ?, weights ?, outputs ?

K

Weights Inputs Outputs

N N’ = N – ceil(K/2)
* = Assume no padding

int i[N];
int w[K];
int o[N];

# Input activations
# Filter weights
# Output activations

for (x = 0; x < N’; x++) {
for (y = 0; y < K; y++) { 

o[x] += i[x+y]*w[y];
}K

K
1

N’K  



Another way to implement 1D CONV

• In this, output and input need to be 
reloaded every cycle 

• Weights are reloaded every N’ cycles
Weight stationary dataflow
•  What is the size of buffer needed so that 

everything is read from main memory 
exactly once ?

• Inputs: N’
• Weights: 1
• Outputs: N’

• How many times is the buffer read?
• For inputs ?, weights ?, outputs ?: N’K

int i[N];
int w[K];
int o[N];

# Input activations
# Filter weights
# Output activations

for (y = 0; y < K; y++) {
for (x = 0; x < N’; x++) { 

o[x] += i[x+y]*w[y];
}

K

Weights Inputs Outputs

N N’ = N – ceil(K/2)
* = Assume appropriate padding



Yet Another way to implement 1D CONV

• In this, output and weight need to be 
reloaded every cycle 

• Inputs are reloaded every N’ cycles
Input stationary dataflow
•  What is the size of buffer needed so that 

everything is read from main memory 
exactly once ?

• Inputs: 1
• Weights: K
• Outputs: N’

• How many times is the buffer read?
• For inputs ?, weights ?, outputs ?: N’K

int i[N];
int w[K];
int o[N];

# Input activations
# Filter weights
# Output activations

for (x = 0; x < N’; x++) {
for (y = 0; y < K; y++) { 

o[x-y] += i[x]*w[y];
}

K

Weights Inputs Outputs

N N’ = N – ceil(K/2)
* = Assume appropriate padding



What about energy ?

• Total Energy = Main memory access energy + Buffer access energy + MAC 
energy

• MAC Energy = N’K *E(MAC)
• Main memory energy = E(Mem_read)*(K+N) + E(Mem_write)*N’
• Buffer access energy: Remember access energy of a buffer will depend on 

its size (for SRAM buffers, roughly linearly increases with size) EBUF(X) is 
access energy of a buffer of size X

• OS: N’K*( EBUF(K) + EBUF(K) + 2*EBUF(1) )
• WS: N’K*( EBUF(1) + EBUF(N) + 2*EBUF(N) )
• IS: N’K*( EBUF(1) + EBUF(K) +  2*EBUF(N’) )
• Recall output partial sums need to be read and written equal number of times to the 

buffer

希冀
Highlight

希冀
Highlight

希冀
Highlight



What about latency ? OS Example
• Naieve implementation: 

1. load buffers from main memory as needed
2. load MAC from buffers: TBUF(K)+ TBUF(K) +TBUF(1)
3. do MAC: TMAC
4. Write output partial sum to buffer: TBUF(1)
5. If output fully computed write to main memory: T(MEM_write) + TBUF (1)
6. Go to step 2 till done (N’K times)
• Total Step 1 time: (N+K)* ( T(Mem_read) + TBUF(K) )
• Total Step 2 time: N’K*(TBUF(K) + TBUF(K) +TBUF(1))
• Total Step 3 time: N’K* TMAC
• Total Step 4 time: N’K * TBUF(1)
• Total Step 5 time:  N’ * ( T(Mem_write) + TBUF(1) )
• Total latency: sum of all steps

• Plenty of ways to speed things up
• What if we make the buffers “dual ported”. I.e., they can be read and written at the same time

• Step 2 and step 4 can happen simultaneously  Step 4 time reduces to 0 
• Step 1 time may be possible to reduce but not by much since T(Mem_read) >> TMAC + TBUF

• What if we add a pipeline stage between BUF and MAC  Step 2, 3, 4 can be overlapped  Step (2+3+4) time becomes 
N’K*max ( (TBUF(K) + TBUF(K) +TBUF(1)), TMAC, TBUF(1) )



Real-Life Complications

• Bigger compute
• You may have more than one MAC  multiple filters or multiple inputs or multiple parts of inputs 

(sliding window/Im2Col) at the same time
• Size of the MAC may be different 

• E.g., it could do 16-way dot product at a time  less partial sum read/writes
• Need more buffer bandwidth to support this

• Buffer is not large enough  will have to read write from main memory during CONV
• This is the common case and the hard problem to optimize as T(MEM) > 10X TBUF > 2X TMAC  

once your read something from memory, reuse it as much as you can before you kick it out 
• Total parameter + activation storage requirements: 10KB – 10TB
• On-chip SRAM: 10KB – 10 MB

• MACs and their local buffers (i.e., a processing element or PE) may be “distributed” with 
a network connecting them  NoC congestion, latency….

• More levels of memory hierarchy
• Small SRAM + Large SRAM/Flash + DRAM + HDD

• Many more….



Logistics

• Colab + Pytorch short tutorial now by Shurui Li
• Project 1 to be announced end of next week.
• If you request a PTE, clearly mention

• Your UID
• Which courses have you taken in computer architecture, ML, VLSI to qualify
• You know Verilog and Python 



5 min break


	Types of Deep Learning
	Model architectures
	Example: An Autoencoder
	A Full Cycle of DL in Practice
	Common Computer Vision Datasets
	Lecture 2: Dataflows
	A Simple NN Hardware Concept
	Simple 1D CONV Example
	Another way to implement 1D CONV
	Yet Another way to implement 1D CONV
	What about energy ?
	What about latency ? OS Example
	Real-Life Complications
	Logistics
	5 min break

