Types of Deep Learning

- Supervised Learning:
 - learning a function that maps an input to an output from datasets consisting of input-output pairs
 - Example: prediction of house price based on location
- Unsupervised Learning:
 - ... input data without labeled responses.
 - Example: recommend channels based on history
- Semi-supervised Learning
 - ... a small amount of labeled data with a large amount of unlabeled data
 - Example: detection of CAR from photos with a few labels
- Reinforcement Learning
 - learning in an interactive environment using feedback from its own actions and experiences
 - Example: game AI

Model architectures

- Convolutional Neural Network (CNN):
 - feed-forward structure consists of a stack of layers
- Recurrent Neural Network (RNN):
 - transform an input sequence into an output sequence
- Transformers:
 - Input to output sequence. Leverage "attention" module
- Autoencoder:
 - learn a low-dimensional representation of a high-dimensional data set
- Generative Adversarial Network (GAN):
 - consist of two (CNN) models competing against each other in a two-player game framework
 - create new fake data by learning through the real data

Example: An Autoencoder

- Two NNs: encoder generating a compressed "latent code" so that reconstruction loss is minimized
 - The latent code can serve as a reduced dimension representation (similar to PCA)
- Generative Adversarial Networks (GANs) use to the encoder component but with a different loss function
 - To generate "realistic" fake inputs
- Related concept: "embedding layers": maps input information from a high-dimensional to a lowerdimensional space
 - Encoders can generate an embedding (of an image, text, graph, ...)
 - Embedding can be as simple as a one-hot encoding of words in a vocabulary

A Full Cycle of DL in Practice

- Training:
 - Data Cleaning
 - Data Input
 - Forward Computation
 - Loss Calculation
 - Backward Computation
 - Parameter Update
 - Converge Check / Stop Criteria
 - Save Model (Parameters)
- Testing/Inference:
 - Data Cleaning
 - Data Input
 - Load Saved Model
 - Forward Computation
 - Results Interpretation

Common Computer Vision Datasets

- MNIST (1998)
 - scans of handwritten digits and associated labels describing which digit 0–9 is contained in each 28x28 image.
 - The training set contains 60000 examples, and the test set 10000 examples.
 - A trivial dataset by modern standards
- CIFAR10 (2009)
 - 60000 32x32 color images in 10 classes, with 6000 images per class.
 - 50000 training images and 10000 test images.
 - Has a 100 class CIFAR100 variant
- IMAGENET (2014)
 - ~14 million labeled images, 20k classes
 - Average image size 469x387 usually downsampled to 224x224
 - Images gathered from Internet
 - Human labels via Amazon MTurk

Lecture 2: Dataflows

Puneet Gupta

Some slides from Lei He

A Simple NN Hardware Concept

Single MAC \rightarrow long dot product is computed by reading partial sums and adding a new multiplication result to compute the next partial sum

Lets assume a MAC takes a cycle

- Main memory access is "expensive" compared to local buffer access
 - Large size, further away
 - Similar to a cache argument

 \rightarrow want to reuse values in local buffers as much as possible before sending them back to main memory (similar to cache hit rate)

• Local buffers limited in size, so cant keep everything!

Simple 1D CONV Example

- How often is a new input read ?
- How often is a new weight read ?
- How often is a new output read ?

Κ

- Output changes the least → output "stationary" dataflow
- What is the size of buffer needed so that everything is read from main memory exactly once ?
 - Inputs:
 - Weights: K
 - Outputs: 1
- How many times is the buffer read?
 - For inputs ?, weights ?, outputs ? N'K

<pre>int i[N]; int w[K]; int o[N];</pre>	<pre># Input activations # Filter weights # Output activations</pre>	
<pre>for (x = 0; x < N'; x++) { for (y = 0; y < K; y++) { o[x] += i[x+y]*w[y]; </pre>		
}		

Another way to implement 1D CONV

- In this, output and input need to be reloaded every cycle
- Weights are reloaded every N' cycles
- \rightarrow Weight stationary dataflow
- What is the size of buffer needed so that everything is read from main memory exactly once ?
 - Inputs: N'
 - Weights: 1
 - Outputs: N'
- How many times is the buffer read?
 - For inputs ?, weights ?, outputs ?: N'K

<pre>int i[N]; int w[K]; int o[N];</pre>	<pre># Input activations # Filter weights # Output activations</pre>
<pre>for (y = 0; y < K; y++) { for (x = 0; x < N'; x++) { o[x] += i[x+y]*w[y]: </pre>	
}	

Yet Another way to implement 1D CONV

Assume appropriate padding

- In this, output and weight need to be reloaded every cycle
- Inputs are reloaded every N' cycles
- \rightarrow Input stationary dataflow
- What is the size of buffer needed so that everything is read from main memory exactly once ?
 - Inputs: 1
 - Weights: K
 - Outputs: N'
- How many times is the buffer read?
 - For inputs ?, weights ?, outputs ?: N'K

<pre>int i[N]; int w[K]; int o[N];</pre>	<pre># Input activations # Filter weights # Output activations</pre>	
<pre>for (x = 0; x < N'; x++) { for (y = 0; y < K; y++) {</pre>		
}		

What about energy ?

- Total Energy = Main memory access energy + Buffer access energy + MAC energy
- MAC Energy = N'K *E(MAC)
- Main memory energy = E(Mem_read)*(K+N) + E(Mem_write)*N'
- Buffer access energy: Remember access energy of a buffer will depend on its size (for SRAM buffers, roughly linearly increases with size) → EBUF(X) is access energy of a buffer of size X
 - OS: N'K*(EBUF(K) + EBUF(K) + 2*EBUF(1))
 - WS: N'K*(EBUF(1) + EBUF(N) + 2*EBUF(N))
 - IS: N'K*(EBUF(1) + EBUF(K) + 2*EBUF(N'))
 - Recall output partial sums need to be read and written equal number of times to the buffer

What about latency ? OS Example

- Naieve implementation:
 - 1. load buffers from main memory as needed
 - 2. load MAC from buffers: TBUF(K) + TBUF(K) + TBUF(1)
 - 3. do MAC: TMAC
 - 4. Write output partial sum to buffer: TBUF(1)
 - 5. If output fully computed write to main memory: T(MEM_write) + TBUF (1)
 - 6. Go to step 2 till done (N'K times)
 - Total Step 1 time: (N+K)* (T(Mem_read) + TBUF(K))
 - Total Step 2 time: N'K*(TBUF(K) + TBUF(K) + TBUF(1))
 - Total Step 3 time: N'K* TMAC
 - Total Step 4 time: N'K * TBUF(1)
 - Total Step 5 time: N' * (T(Mem_write) + TBUF(1))
 - Total latency: sum of all steps
- Plenty of ways to speed things up
 - What if we make the buffers "dual ported". I.e., they can be read and written at the same time
 - Step 2 and step 4 can happen simultaneously \rightarrow Step 4 time reduces to 0
 - Step 1 time may be possible to reduce but not by much since T(Mem_read) >> TMAC + TBUF
 - What if we add a pipeline stage between BUF and MAC → Step 2, 3, 4 can be overlapped → Step (2+3+4) time becomes N'K*max ((TBUF(K) + TBUF(K) + TBUF(1)), TMAC, TBUF(1))

Real-Life Complications

- Bigger compute
 - You may have more than one MAC → multiple filters or multiple inputs or multiple parts of inputs (sliding window/Im2Col) at the same time
 - Size of the MAC may be different
 - E.g., it could do 16-way dot product at a time \rightarrow less partial sum read/writes
 - Need more buffer bandwidth to support this
- Buffer is not large enough \rightarrow will have to read write from main memory during CONV
 - This is the common case and the hard problem to optimize as T(MEM) > 10X TBUF > 2X TMAC → once your read something from memory, *reuse* it as much as you can before you kick it out
 - Total parameter + activation storage requirements: 10KB 10TB
 - On-chip SRAM: 10KB 10 MB
- MACs and their local buffers (i.e., a processing element or PE) may be "distributed" with a network connecting them → NoC congestion, latency....
- More levels of memory hierarchy
 - Small SRAM + Large SRAM/Flash + DRAM + HDD
- Many more....

Logistics

- Colab + Pytorch short tutorial now by Shurui Li
- Project 1 to be announced end of next week.
- If you request a PTE, clearly mention
 - Your UID
 - Which courses have you taken in computer architecture, ML, VLSI to qualify
 - You know Verilog and Python

5 min break