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Observation 1: Scaling of DNN Models

• Compute and memory requirements have both been increasing at a 
rate much faster than technology scaling

Metrics LeNet-5
[1998]

AlexNet
[2012]

VGG-16
[2015]

ResNet-50
[2016]

Top-5 error 
(ImageNet)

n/a 16.4 7.4 5.3

Input Size 28x28 227x227 224x224 224x224
# of CONV Layers 2 5 16 49
# of Weights 2.6k 2.3M 14.7M 23.5M
# of MACs 283k 666M 15.3G 3.86G
# of FC layers 2 3 3 1
# of Weights 58k 58.6M 124M 2M
# of MACs 58k 58.6M 124M 2M
Total Weights 60k 61M 138M 25.5M
Total MACs 341k 724M 15.5G 3.9G
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Observation 2: Where does energy and time 
go ?
• Every MAC operation requires reading 

three operands  cost of reading 
10X-100X higher than cost of compute

• Latency follows similar trends
• Minimizing data movement is critical
  reuse data as much as you can once 
you have read it

• Reuse from where ?
• From local buffer memory
• From a distant larger memory
• From even further away DRAM 
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Basic Principles of Reuse 

• Data read once from a large expensive 
memory
• Temporal Reuse

– Store data to a small cheap memory and reuse 
data several times

• Spatial Reuse
– Send the same data to multiple PEs and reuse 

data at distinct PEs

●
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Input Reuse
● The same ifmap is used by several filters

– Different filters applied to the same ifmap
– Each input activation is reused M times

rFilte 
1

rFilte 
2

rFilte
M

Input Feature Map

...



Weight Reuse

• The same filter is applied to different ifmap (batch size > 1)

Filter

Input Feature Map 1

Input Feature Map 2



Convolutional Reuse
● The same filter is applied to different parts of 

the ifmap
– The filter is reused
– Part of the ifmap is reused

Input Feature Map

Filter

Part of the 
Ifmap reused



Output (Partial Sum) Reuse

• Dot product sizes in NN layers are large (64-2048); 
#MACs is smaller  partial sums need to be stored

• In memory  many costly main memory accesses
• From buffer  cheaper but extra hardware

• E.g., 128x(3x3x128) CONV layer; 16-sized MAC in 
hardware;

• Dot product size:
•  1152

• Number of partial sum read/writes: 
• 1152/16=72 

• How many main memory read/writes ?
• Depends on output buffer size; dataflow
• Buffer size = 1

• OS: 0
• WS: 72*128
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MAPPING REUSE TO HARDWARE
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• 7D Computation Space
• R * S * X * Y * C * K * N

• 4D Operand / Result Spaces –
• Weights – R * S * C * K
• Inputs
• Output

– X * Y * C * N
s – X’ * Y’ * K * N

DRAM Buf RF *Temporal

Multicast Forwarding

Algorithmic 
Reuse

map

Hardware
Reuse

Millions of non-trivial mappings possible
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What limits performance of DNNs?

• Two primary categories: Compute-bound and Memory-bound
• Compute-bound: Performance is bottlenecked by the computation (limited by FLOPs of the 

hardware)
• Memory-bound: Performance is bottlenecked by memory bandwidth (e.g., limited by DRAM 

bandwidth in GB/s)

• How to determine whether a DNN operator is compute-bound or memory-bound?
• Calculate the arithmetic intensity (FLOPs/B): number of floating-point operations (FLOP) 

performed per byte of memory transfer
• Arithmetic intensity depends on which memory is considered (DRAM or SRAM)
• For Neural networks, typically DRAM should be considered first
• Higher arithmetic intensity  more compute heavy 

• Compare the arithmetic intensity with memory bandwidth
• Ops/byte ratio: 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/𝑠𝑠)
  - ratio of compute and memory throughput

• AI > Ops/byte -> compute-bound
• AI < Ops/byte -> memory-bound

• Hardware and software should focus optimizations on the right problem!



Roofline model

• Roofline model is a simple throughput-oriented 
performance model

• DRAM roofline assumes no bandwidth/latency bottlenecks 
on L1/L2 caches

• Any given code loop will perform: 
• Computation (FLOPs)
• Communication (moving data to/from DRAM)

• With perfect overlap of communication and computation
• Run time is determined by which ever is greater

• Overall attainable throughput is determined by:
• AI (Arithmetic Intensity) = FLOPs / Bytes (considering DRAM)



DRAM Roofline

• Plot roofline bound using Arithmetic 
Intensity as the x-axis

• Log-log scale makes it easy to doodle, 
extrapolate performance, etc.



DRAM Roofline

• Roofline model categories the 
performance into 5 regions

• Unattainable performance due to compute
• Unattainable performance due to memory
• Memory-bound
• Compute-bound
• Poor performance (can potentially be 

optimized)

• Improving Arithmetic Intensity
• Increase cache/SRAM size 
• Increase reuse

• E,g,, increase batch size



Some examples
Examples of neural network operations with their arithmetic intensities. Limiters assume FP16 data 
and a NVIDIA Tesla V100 GPU

Operation Arithmetic Intensity Usually limited by
Linear (FC) layer (4096 outputs, 
2014 inputs, batch size 512) 

315 FLOPS/B Arithmetic

Linear (FC) layer (4096 outputs, 
2014 inputs, batch size 1) 

1 FLOPS/B Memory

Max pooling with 3x3 window 
and unit stride

2.25 FLOPS/B Memory

ReLU activation 0.25 FLOPS/B Memory
Layer normalization < 10 FLOPS/B Memory



Review papers for Week 3
• Lecture 5

1. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International 
Symposium on Computer Architecture (ISCA '17). Association for Computing Machinery, New York, NY, USA, 1–12. 
https://doi.org/10.1145/3079856.3080246

2. Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a spatial architecture for energy-efficient dataflow for 
convolutional neural networks. In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA '16). 
IEEE Press, 367–379. https://doi.org/10.1109/ISCA.2016.40

3. Jeon, W., Ko, G., Lee, J., Lee, H., Ha, D., & Ro, W. W. (2021). Deep learning with GPUs. Advances in Computers, 122, 167-
215. https://doi.org/10.1016/bs.adcom.2020.11.003

• Lecture 6
1. Samajdar, Ananda, et al. "Scale-sim: Systolic cnn accelerator simulator." arXiv preprint 

arXiv:1811.02883 (2018).
2. J. Lee, C. Kim, S. Kang, D. Shin, S. Kim and H. -J. Yoo, "UNPU: An Energy-Efficient Deep Neural Network 

Accelerator With Fully Variable Weight Bit Precision," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 
173-185, Jan. 2019, doi: 10.1109/JSSC.2018.2865489

3. Y. Chen et al., "DaDianNao: A Machine-Learning Supercomputer," 2014 47th Annual IEEE/ACM International 
Symposium on Microarchitecture, Cambridge, UK, 2014, pp. 609-622, doi: 10.1109/MICRO.2014.58.

• Speaker assignments posted on Piazza.
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Logistics

• For paper presentations
• Upload PDF or PPT slides on Gradescope. Grading will be done there
• Stick to your time limit (points deducted for too long or too short a 

presentation)
• If you do not understand some of the background for the paper, review it!
• Do NOT just summarize the paper, critique it.

• Remainder of the Pytorch + Colab tutorial on Wednesday.
• Expect Project 1 announced end of this week or early next week.
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