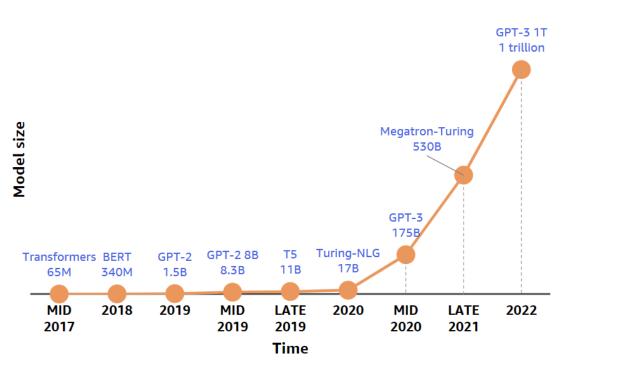
Lecture 3: Data Reuse

Puneet Gupta

Puneet Gupta ECE209AS

Observation 1: Scaling of DNN Models



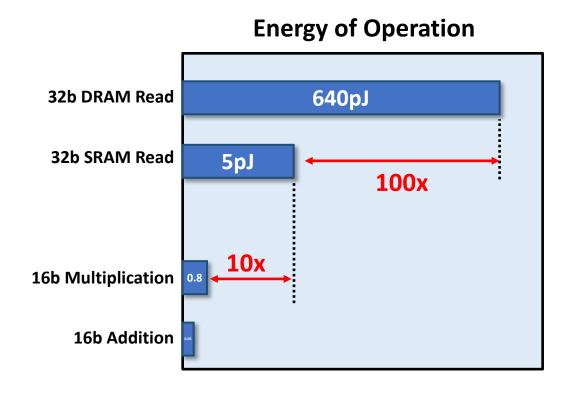
Metrics	LeNet-5 [1998]	AlexNet [2012]	VGG-16 [2015]	ResNet-50 [2016]
Top-5 error (ImageNet)	n/a	16.4	7.4	5.3
Input Size	28x28	227x227	224x224	224x224
# of CONV Layers	2	5	16	49
# of Weights	2.6k	2.3M	14.7M	23.5M
# of MACs	283k	666M	15.3G	3.86G
# of FC layers	2	3	3	1
# of Weights	58k	58.6M	124M	2M
# of MACs	58k	58.6M	124M	2M
Total Weights	60k	61M	138M	25.5M
Total MACs	341k	724M	15.5G	3.9G

• Compute and memory requirements have both been increasing at a rate much faster than technology scaling

Puneet Gupta ECE209AS

Observation 2: Where does energy and time go ?

- Every MAC operation requires reading three operands → cost of reading 10X-100X higher than cost of compute
 - Latency follows similar trends
 - Minimizing data movement is critical
 - \rightarrow reuse data as much as you can once you have read it
- Reuse from where ?
 - From local buffer memory
 - From a distant larger memory
 - From even further away DRAM

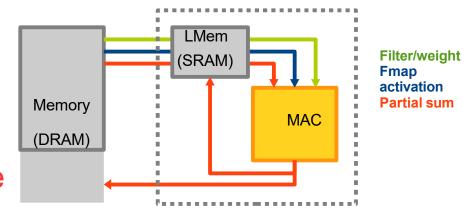


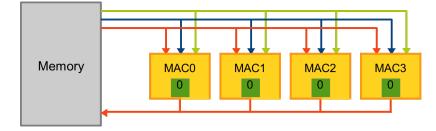
Basic Principles of Reuse

- Data read once from a large expensive memory
- Temporal Reuse
 - Store data to a small cheap memory and reuse data several times

Spatial Reuse

 Send the same data to multiple PEs and reuse data at distinct PEs

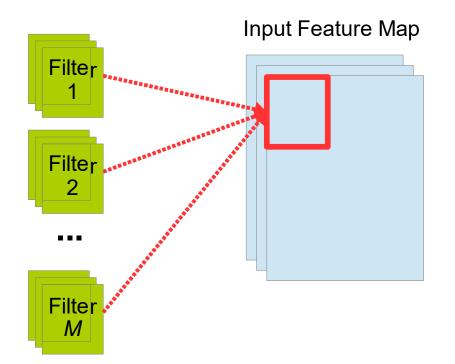




[IITG JJTV SPARC2]

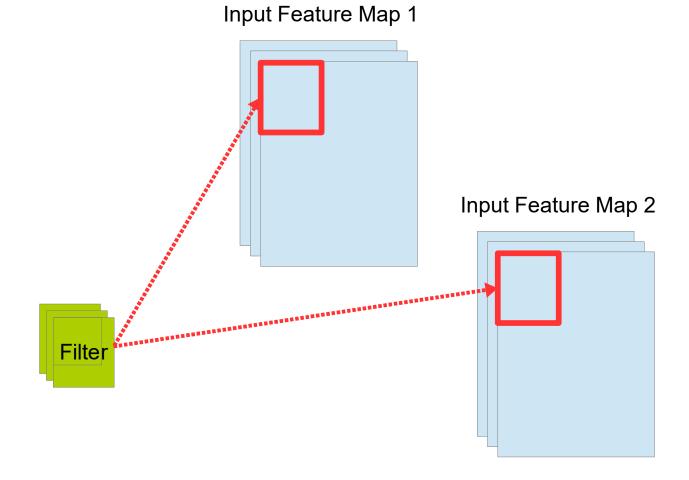
Input Reuse

- The same ifmap is used by several filters
 - Different filters applied to the same ifmap
 - Each input activation is reused *M* times



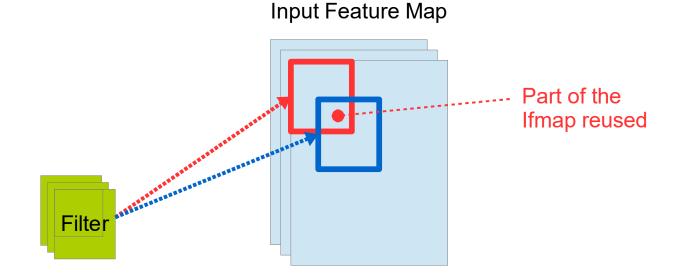
Weight Reuse

• The same filter is applied to different ifmap (batch size > 1)



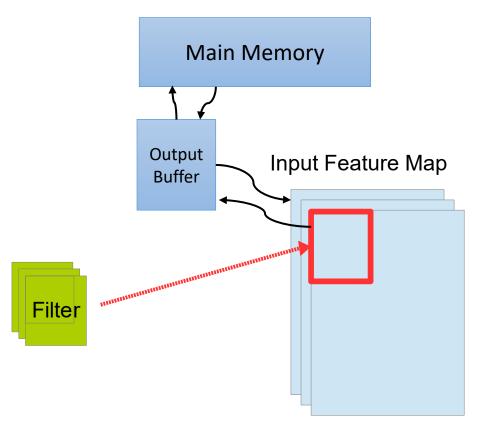
Convolutional Reuse

- The same filter is applied to different parts of the ifmap
 - The filter is reused
 - Part of the ifmap is reused

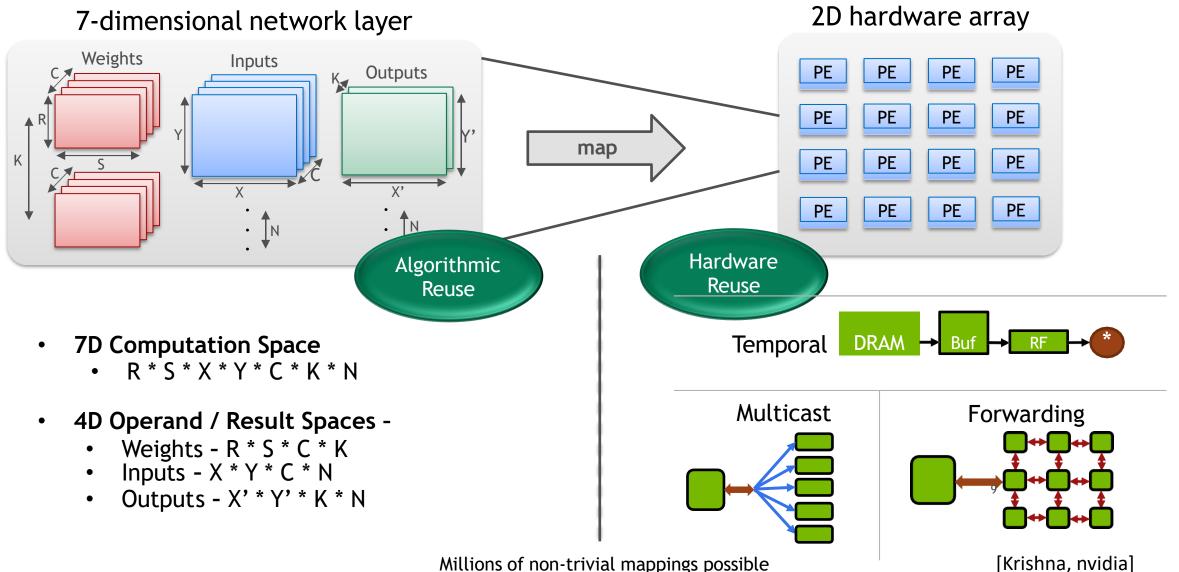


Output (Partial Sum) Reuse

- Dot product sizes in NN layers are large (64-2048);
 #MACs is smaller → partial sums need to be stored
 - In memory \rightarrow many costly main memory accesses
 - From buffer \rightarrow cheaper but extra hardware
- E.g., 128x(3x3x128) CONV layer; 16-sized MAC in hardware;
 - Dot product size:
 - 1152
 - Number of partial sum read/writes:
 - 1152/16=72
 - How many main memory read/writes ?
 - Depends on output buffer size; dataflow
 - Buffer size = 1
 - OS: 0
 - WS: 72*128



MAPPING REUSE TO HARDWARE



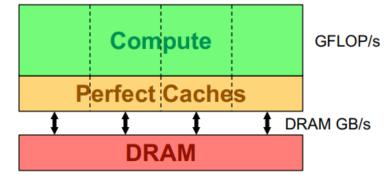
Millions of non-trivial mappings possible

What limits performance of DNNs?

- Two primary categories: Compute-bound and Memory-bound
 - Compute-bound: Performance is bottlenecked by the computation (limited by FLOPs of the hardware)
 - Memory-bound: Performance is bottlenecked by memory bandwidth (e.g., limited by DRAM bandwidth in GB/s)
- How to determine whether a DNN operator is compute-bound or memory-bound?
 - Calculate the arithmetic intensity (FLOPs/B): number of floating-point operations (FLOP) performed per byte of memory transfer
 - Arithmetic intensity depends on which memory is considered (DRAM or SRAM)
 - For Neural networks, typically DRAM should be considered first
 - Higher arithmetic intensity \rightarrow more compute heavy
 - Compare the arithmetic intensity with memory bandwidth
 - Ops/byte ratio: $\frac{BW_{math}(FLOPS)}{BW_{mem}(Bytes/s)}$ ratio of compute and memory throughput
 - AI > Ops/byte -> compute-bound
 - AI < Ops/byte -> memory-bound
- Hardware and software should focus optimizations on the right problem!

Roofline model

- **Roofline model** is a simple throughput-oriented performance model
- DRAM roofline assumes no bandwidth/latency bottlenecks on L1/L2 caches
- Any given code loop will perform:
 - Computation (FLOPs)
 - Communication (moving data to/from DRAM)
- With perfect overlap of communication and computation
 - Run time is determined by which ever is greater
 - Overall attainable throughput is determined by:
 - AI (Arithmetic Intensity) = FLOPs / Bytes (considering DRAM)



```
Time = max 

#FLOPs / Peak GFLOP/s

#Bytes / Peak GB/s

GFLOP/s = min 

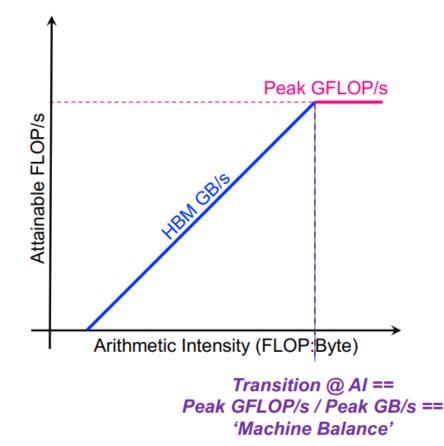
Peak GFLOP/s

AI * Peak GB/s
```

DRAM Roofline

GFLOP/s = min {Peak GFLOP/s AI * Peak GB/s

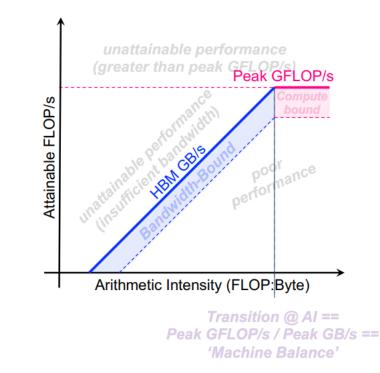
- Plot roofline bound using Arithmetic Intensity as the x-axis
- Log-log scale makes it easy to doodle, extrapolate performance, etc.



DRAM Roofline

GFLOP/s = min { Peak GFLOP/s AI * Peak GB/s

- Roofline model categories the performance into 5 regions
 - Unattainable performance due to compute
 - Unattainable performance due to memory
 - Memory-bound
 - Compute-bound
 - Poor performance (can potentially be optimized)
- Improving Arithmetic Intensity
 - Increase cache/SRAM size
 - Increase reuse
 - E,g,, increase batch size



Some examples

Examples of neural network operations with their arithmetic intensities. Limiters assume FP16 data and a NVIDIA Tesla V100 GPU

Operation	Arithmetic Intensity	Usually limited by
Linear (FC) layer (4096 outputs, 2014 inputs, batch size 512)	315 FLOPS/B	Arithmetic
Linear (FC) layer (4096 outputs, 2014 inputs, batch size 1)	1 FLOPS/B	Memory
Max pooling with 3x3 window and unit stride	2.25 FLOPS/B	Memory
ReLU activation	0.25 FLOPS/B	Memory
Layer normalization	< 10 FLOPS/B	Memory

Review papers for Week 3

• Lecture 5

- 1. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA '17). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3079856.3080246
- 2. Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA '16). IEEE Press, 367–379. <u>https://doi.org/10.1109/ISCA.2016.40</u>
- 3. Jeon, W., Ko, G., Lee, J., Lee, H., Ha, D., & Ro, W. W. (2021). Deep learning with GPUs. Advances in Computers, 122, 167-215. https://doi.org/10.1016/bs.adcom.2020.11.003

Lecture 6

- 1. Samajdar, Ananda, et al. "Scale-sim: Systolic cnn accelerator simulator." *arXiv preprint arXiv:1811.02883* (2018).
- J. Lee, C. Kim, S. Kang, D. Shin, S. Kim and H. -J. Yoo, "UNPU: An Energy-Efficient Deep Neural Network Accelerator With Fully Variable Weight Bit Precision," in *IEEE Journal of Solid-State Circuits*, vol. 54, no. 1, pp. 173-185, Jan. 2019, doi: 10.1109/JSSC.2018.2865489
- 3. Y. Chen *et al.*, "DaDianNao: A Machine-Learning Supercomputer," *2014 47th Annual IEEE/ACM International Symposium on Microarchitecture*, Cambridge, UK, 2014, pp. 609-622, doi: 10.1109/MICRO.2014.58.
- Speaker assignments posted on Piazza.

Logistics

- For paper presentations
 - Upload PDF or PPT slides on Gradescope. Grading will be done there
 - Stick to your time limit (points deducted for too long or too short a presentation)
 - If you do not understand some of the background for the paper, review it!
 - Do NOT just summarize the paper, critique it.
- Remainder of the Pytorch + Colab tutorial on Wednesday.
- Expect Project 1 announced end of this week or early next week.