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Logistics

• Part 1 of Project 1 should be on Piazza today. Part 2 likely tomorrow.
• Due April 29
• Code submission details to be announced by TA
• Report should be 6 slides uploaded on Gradescope. 

• Briefly outline your approach and results
• For group projects, create a group submission in Gradescope and submit once 
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What would a NN “compiler” do ?

• Rewrite the computational graphs to functionally equivalent, but more efficient 
ones.

• Subject to what hardware backend we are running on.
• High level computation graph optimizations as well as operator level 

optimizations
• Fuses whichever operators it can to reduce memory operations 
• Transforms the shapes of intermediate tensor data to allow for more efficient execution on 

the used hardware
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Example: Operator Fusion

• MAC vs. FMA
• Fused Multiply-Add done in one step with a single rounding
• Fused operator can also simplify control logic (no need to 

shuttle data from MULT to ADD)

• Key Idea behind operator fusion
• Do not go to memory repeatedly but store intermediate 

tensors locally
• Can fuse one-to-one operations (e.g., Bias+ReLU) or 

reduction operators with one-to-one (e.g,, CONV with ReLU)
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Operator Fusion

• Can save costly large memory accesses 
but may require more storage in the 
local buffers/registers/memory
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Example: Loop Tiling/Data Layout
• Naieve GEMM:
for i = 1 to n
  {read row i of A into fast memory}
   for j = 1 to n
       {read C(i,j) into fast memory}
       {read column j of B into fast memory}
       for k = 1 to n
           C(i,j) = C(i,j) + A(i,k) * B(k,j)
       {write C(i,j) back to slow memory}
• Tiled GEMM

• Block/tile size b = n/N
 for i = 1 to N
  for j = 1 to N
          {read block C(i,j) into fast memory}
               for k = 1 to N
                    {read block A(i,k) into fast memory}
           {read block B(k,j) into fast memory}
          C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
              {write block C(i,j) back to slow memory}
• Need to be able to fit enough data (3b) in local 

memory/caches
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Arithmetic intensity:
     n3       to read each column of B  n  times
         + n2     to read each row of A once 
         + 2n2   to read and write each element of C once
        = n3 + 3n2

# ops = 2 n3      AI ≈ 2

N*n2    read each block of B  N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)
         + N*n2   read each block of A  N3 times
         + 2n2     read and write each block of C once
        =  (2N + 2) * n2

AI  ≈ n / N = b  for large n



Example: Hiding Memory Latency

• Control needs to account for dependencies
• You may need on-chip ping-pong buffers to 

overlap DRAM reads with compute
• Ping buffer filled at the same time as Pong buffer 

being read
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