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Logistics

• No lecture next Wednesday
• No presentations

• TA will schedule a  project office hour at that time over zoom. Link 
upcoming.
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Why Neural Network Compression?

• What is model compression ?
• Reduce the size of the model (often measured in total weight storage needed)

• Why ?
• Modern neural networks are very large  Limited Resources on most platforms: 

memory, CPU, energy, bandwidth
•  may not fit on the device, especially edge/mobile 

• AlexNet
• 60 million parameters with 5 conv layers and 3 FC layers
• 240MB of memory to store the parameters

• Expensive to run  energy cost, especially for battery-operated devices

[Horowitz, Stanford VLSI Wiki]
Energy table for 45nm CMOS process.



How is a model compressed ?

• Note: this is NOT memory compression with fixed model!
• You may be able to compress weights or reduce memory traffic by 

conventional data compression approaches (e.g., Huffman Coding)

• Two categories of approaches
• Quantization

• fp32->fp16/bfloat16->fp8 (Training/inference)
• int16->int8->int4->Ternary->Binary (Inference)
• Reduce storage and compute

• Pruning
• Delete edges, neurons, channels, filters from the network
• Can save storage and compute if done properly
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Quantization

• Float-to-fixed point conversion required to target
• ASIC and fixed-point digital signal processor core
• FPGA and fixed-point microprocessor core

• Fixed point format
•Wordlength (WL); Integer wordlength (IL); Fraction wordlength (FL)
•FL limits the precision
•<𝐼𝐼𝐿𝐿,𝐹𝐹𝐿𝐿> sets the range to −2𝐼𝐼𝐿𝐿−1,2𝐼𝐼𝐿𝐿−1−2−𝐹𝐹𝐿𝐿 

• Minimize quantization effects
• Avoid overflow
• Find optimum wordlength

• Longer wordlength
• May improve application performance
• Increases hardware cost

• Shorter wordlength
• May increase quantization errors and overflows
• Reduces hardware cost
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Quantization Effects

• Quantization modes
• Round
• Truncation
• Stochastic Rounding

• xx1 with probability (x-x1)/(x2-x1)
• On average rounded value is x unlike deterministic 

rounding
• Overflow modes

• Saturation
• Saturation to zero (Nulling)
• Wrap-around (Sawtooth)

• Preserves difference of two rounded numbers!
• Hardware may not support all modes

Puneet Gupta ECE209AS



Quantization Contexts 
• Typical quantization:

• Scale and bias to select the quantization range
• S: input_range/output_range
• Z: to map 0 in input space to 0 in output space

• Post Training Static Quantization
• Quantize weights (and activations) to required 

wordlength/bitwidth
• Quantization Aware Training

• fake quantization to all the weights and activations during the 
model training

• higher inference accuracy than the post-training quantization 
methods
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Partial Sum Quantization
• Typically algorithmic dot-product size > hardware MAC size  partial sums are computed
• Digital systems usually do not quantize partial sums

• E.g. algorithmic filter size: 256; 8b inputs, 8b weights  24b final output  each MAC in a systolic 
array would be 24b output hardware overhead

• Analog systems often quantize partial sums (analog to digital conversion is the quantizer)
• Larger hardware MAC size  less quantization error
• E.g., Resnet14 on CIFAR10 (quantization-aware training)

• Each color is a different hardware dot product size
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How much quantization ?
• Nvidia T4 example TOPS:

• 8.1 (FP32), 65 (FP16), 130 (INT8), 260 (INT4) 
• Even more extreme quantization

• Ternary weight networks: weights are -1, 0, +1; activations not quantized
• MAC replaced by adder/subtractor

• Binary weight networks: weights are -1, +1
• XNOR (binarized) networks: weights and activations are -1, +1

• MULT replaced by bitwise XNOR; Accumulate by popcount (hamming weight)

• Most models have negligible accuracy loss for ~8b weight quantization and small loss 
down to BWNs
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Quantization-Aware Training Using STE
• FP weights are preserved 

during training to accumulate 
small gradient effects

• STE: Straight Through Estimator
• Useful when gradient of 

quantization function is difficult 
to calculate or not useful (e.g., 0)

• E.g., for binarization, threshold 
function gradient is 0

• In backprop, gradient is just 
passed along as if quantization 
function is an identity function
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Intuitive Explanation of Straight-Through 
Estimators with PyTorch Implementation 
| by Hassan Askary | Medium

https://hassanaskary.medium.com/intuitive-explanation-of-straight-through-estimators-with-pytorch-implementation-71d99d25d9d0
https://hassanaskary.medium.com/intuitive-explanation-of-straight-through-estimators-with-pytorch-implementation-71d99d25d9d0
https://hassanaskary.medium.com/intuitive-explanation-of-straight-through-estimators-with-pytorch-implementation-71d99d25d9d0
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