Lecture 6: Neural Network Model Compression

Puneet Gupta

Puneet Gupta ECE209AS

Logistics

- No lecture next Wednesday
 - No presentations
- TA will schedule a project office hour at that time over zoom. Link upcoming.

Why Neural Network Compression?

				Relative Energy Cost				
Operation	Energy [pJ]	Relative Cost	l					
32 bit int ADD	0.1	1						
32 bit float ADD	0.9	9						
32 bit Register File	1	10	_					
32 bit int MULT	3.1	31						
32 bit float MULT	3.7	37						
32 bit SRAM Cache	5	50						
32 bit DRAM Memory	640	6400						
			1	10	100	1000	10000	

Energy table for 45nm CMOS process. [Horowitz, Stanford VLSI Wiki]

- What is model compression ?
 - Reduce the size of the model (often measured in total weight storage needed)
- Why ?
 - Modern neural networks are very large → Limited Resources on most platforms: memory, CPU, energy, bandwidth
 - may not fit on the device, especially edge/mobile
 - AlexNet
 - 60 million parameters with 5 conv layers and 3 FC layers
 - 240MB of memory to store the parameters
 - Expensive to run \rightarrow energy cost, especially for battery-operated devices

How is a model compressed ?

- Note: this is <u>NOT</u> memory compression with fixed model!
 - You may be able to compress weights or reduce memory traffic by conventional data compression approaches (e.g., Huffman Coding)
- Two categories of approaches
 - Quantization
 - fp32->fp16/bfloat16->fp8 (Training/inference)
 - int16->int8->int4->Ternary->Binary (Inference)
 - Reduce storage and compute
 - Pruning
 - Delete edges, neurons, channels, filters from the network
 - *Can* save storage and compute if done properly

Quantization

- Float-to-fixed point conversion required to target
 - ASIC and fixed-point digital signal processor core
 - FPGA and fixed-point microprocessor core
- Fixed point format
 - Wordlength (WL); Integer wordlength (IL); Fraction wordlength (FL)
 - FL limits the precision
 - •<*IL*,*FL*> sets the range to -2^{IL-1} , $2^{IL-1}-2^{-FL}$
- Minimize quantization effects
- Avoid overflow
- Find optimum wordlength
 - Longer wordlength
 - May improve application performance
 - Increases hardware cost
 - Shorter wordlength
 - May increase quantization errors and overflows
 - Reduces hardware cost

Quantization Effects

- Quantization modes
 - Round
 - Truncation
 - Stochastic Rounding
 - $x \rightarrow x1$ with probability (x-x1)/(x2-x1)
 - On average rounded value is x unlike deterministic rounding
- Overflow modes
 - Saturation
 - Saturation to zero (Nulling)
 - Wrap-around (Sawtooth)
 - Preserves difference of two rounded numbers!
- Hardware may not support all modes

Saturation

 A^{\ddagger}

Quantization Contexts

- Typical quantization: Q(r) = round(r/S + Z)
 - Scale and bias to select the quantization range
 - S: input_range/output_range
 - Z: to map 0 in input space to 0 in output space
- Post Training Static Quantization
 - Quantize weights (and activations) to required wordlength/bitwidth
- Quantization Aware Training
 - fake quantization to all the weights and activations during the model training
 - higher inference accuracy than the post-training quantization methods

per-channel quantization

Partial Sum Quantization

- Typically algorithmic dot-product size > hardware MAC size → partial sums are computed
- Digital systems usually do not quantize partial sums
 - E.g. algorithmic filter size: 256; 8b inputs, 8b weights → 24b final output → each MAC in a systolic array would be 24b output → hardware overhead
- Analog systems often quantize partial sums (analog to digital conversion is the quantizer)
 - Larger hardware MAC size \rightarrow less quantization error
 - E.g., Resnet14 on CIFAR10 (quantization-aware training)
 - Each color is a different hardware dot product size

Puneet Gupta ECE209AS

How much quantization ?

- Nvidia T4 example TOPS:
 - 8.1 (FP32), 65 (FP16), 130 (INT8), 260 (INT4)
- Even more extreme quantization
 - Ternary weight networks: weights are -1, 0, +1; activations not quantized
 - MAC replaced by adder/subtractor
 - Binary weight networks: weights are -1, +1
 - XNOR (binarized) networks: weights and activations are -1, +1
 - MULT replaced by bitwise XNOR; Accumulate by popcount (hamming weight)
- Most models have negligible accuracy loss for ~8b weight quantization and small loss down to BWNs

Quantization-Aware Training Using STE

- FP weights are preserved during training to accumulate small gradient effects
- STE: Straight Through Estimator
 - Useful when gradient of quantization function is difficult to calculate or not useful (e.g., 0)
 - E.g., for binarization, threshold function gradient is 0
 - In backprop, gradient is just passed along as if quantization function is an identity function

Intuitive Explanation of Straight-Through Estimators with PyTorch Implementation | by Hassan Askary | Medium