
Lecture 6: Neural Network
Model Compression

Puneet Gupta

Puneet Gupta ECE209AS

Logistics

• No lecture next Wednesday
• No presentations

• TA will schedule a project office hour at that time over zoom. Link
upcoming.

Puneet Gupta ECE209AS

Why Neural Network Compression?

• What is model compression ?
• Reduce the size of the model (often measured in total weight storage needed)

• Why ?
• Modern neural networks are very large Limited Resources on most platforms:

memory, CPU, energy, bandwidth
• may not fit on the device, especially edge/mobile

• AlexNet
• 60 million parameters with 5 conv layers and 3 FC layers
• 240MB of memory to store the parameters

• Expensive to run energy cost, especially for battery-operated devices

[Horowitz, Stanford VLSI Wiki]
Energy table for 45nm CMOS process.

How is a model compressed ?

• Note: this is NOT memory compression with fixed model!
• You may be able to compress weights or reduce memory traffic by

conventional data compression approaches (e.g., Huffman Coding)

• Two categories of approaches
• Quantization

• fp32->fp16/bfloat16->fp8 (Training/inference)
• int16->int8->int4->Ternary->Binary (Inference)
• Reduce storage and compute

• Pruning
• Delete edges, neurons, channels, filters from the network
• Can save storage and compute if done properly

Puneet Gupta ECE209AS

Quantization

• Float-to-fixed point conversion required to target
• ASIC and fixed-point digital signal processor core
• FPGA and fixed-point microprocessor core

• Fixed point format
•Wordlength (WL); Integer wordlength (IL); Fraction wordlength (FL)
•FL limits the precision
•<𝐼𝐼𝐿𝐿,𝐹𝐹𝐿𝐿> sets the range to −2𝐼𝐼𝐿𝐿−1,2𝐼𝐼𝐿𝐿−1−2−𝐹𝐹𝐿𝐿

• Minimize quantization effects
• Avoid overflow
• Find optimum wordlength

• Longer wordlength
• May improve application performance
• Increases hardware cost

• Shorter wordlength
• May increase quantization errors and overflows
• Reduces hardware cost

Puneet Gupta ECE209AS

S X X X X X

Wordlength

Integer wordlength

Wordlength (w)

Distortion [1/performance]

Optimum
wordlength

Quantization Effects

• Quantization modes
• Round
• Truncation
• Stochastic Rounding

• xx1 with probability (x-x1)/(x2-x1)
• On average rounded value is x unlike deterministic

rounding
• Overflow modes

• Saturation
• Saturation to zero (Nulling)
• Wrap-around (Sawtooth)

• Preserves difference of two rounded numbers!
• Hardware may not support all modes

Puneet Gupta ECE209AS

Quantization Contexts
• Typical quantization:

• Scale and bias to select the quantization range
• S: input_range/output_range
• Z: to map 0 in input space to 0 in output space

• Post Training Static Quantization
• Quantize weights (and activations) to required

wordlength/bitwidth
• Quantization Aware Training

• fake quantization to all the weights and activations during the
model training

• higher inference accuracy than the post-training quantization
methods

Puneet Gupta ECE209AS

Partial Sum Quantization
• Typically algorithmic dot-product size > hardware MAC size partial sums are computed
• Digital systems usually do not quantize partial sums

• E.g. algorithmic filter size: 256; 8b inputs, 8b weights 24b final output each MAC in a systolic
array would be 24b output hardware overhead

• Analog systems often quantize partial sums (analog to digital conversion is the quantizer)
• Larger hardware MAC size less quantization error
• E.g., Resnet14 on CIFAR10 (quantization-aware training)

• Each color is a different hardware dot product size

Puneet Gupta ECE209AS

0.00

20.00

40.00

60.00

80.00

100.00

16 8 7 6 5 4

Ac
cu

ra
cy

Partial sum precision

Input/weight bitwidth = 16

16 8 4 2 1

0.00

20.00

40.00

60.00

80.00

100.00

16 8 7 6 5 4

Ac
cu

ra
cy

Partial sum precision

Input/weight bitwidth = 8

16 8 4 2 1

0.00

20.00

40.00

60.00

80.00

16 8 7 6 5 4

Ac
cu

ra
cy

Partial sum precision

Input/weight bitwidth = 4

16 8 4 2 1

How much quantization ?
• Nvidia T4 example TOPS:

• 8.1 (FP32), 65 (FP16), 130 (INT8), 260 (INT4)
• Even more extreme quantization

• Ternary weight networks: weights are -1, 0, +1; activations not quantized
• MAC replaced by adder/subtractor

• Binary weight networks: weights are -1, +1
• XNOR (binarized) networks: weights and activations are -1, +1

• MULT replaced by bitwise XNOR; Accumulate by popcount (hamming weight)

• Most models have negligible accuracy loss for ~8b weight quantization and small loss
down to BWNs

Puneet Gupta ECE209AS

3.14 -0.3 1.64

-5.2 1.41 -33.6

999 10.9 -1.2

3. 25 -0.25 1. 75

-5.25 1. 5 -33.5

999 11 -1.25

3 0 2

-5 1 -34

127 11 -1

1 1 1

-1 1 -1

1 1 -1

Floating-Point Fixed-Point Integer Binarized

Quantization-Aware Training Using STE
• FP weights are preserved

during training to accumulate
small gradient effects

• STE: Straight Through Estimator
• Useful when gradient of

quantization function is difficult
to calculate or not useful (e.g., 0)

• E.g., for binarization, threshold
function gradient is 0

• In backprop, gradient is just
passed along as if quantization
function is an identity function

Puneet Gupta ECE209AS

Intuitive Explanation of Straight-Through
Estimators with PyTorch Implementation
| by Hassan Askary | Medium

https://hassanaskary.medium.com/intuitive-explanation-of-straight-through-estimators-with-pytorch-implementation-71d99d25d9d0
https://hassanaskary.medium.com/intuitive-explanation-of-straight-through-estimators-with-pytorch-implementation-71d99d25d9d0
https://hassanaskary.medium.com/intuitive-explanation-of-straight-through-estimators-with-pytorch-implementation-71d99d25d9d0

	Lecture 6: Neural Network Model Compression
	Logistics
	Why Neural Network Compression?
	How is a model compressed ?
	Quantization
	Quantization Effects
	Quantization Contexts
	Partial Sum Quantization
	How much quantization ?
	Quantization-Aware Training Using STE

