Lecture 7: Neural Network
Pruning

Puneet Gupta

Logistics

* No lecture next class
* No presentations

* TA will schedule a project office hour at that time over zoom. Link
upcoming.

Pruning

« Basic idea: learn which connections are important; delete the rest (i.e.,
snap weights to 0)
» Makes the network sparse
* How does pruning save storage ?
 Don’t really storea O
* May be use specialized sparse storage formats

* How does pruning save compute ?
e Less “real” operations (don’t need to do multiply or add by 0)
* Reality: very hard to engineer efficient sparse processing architectures

 Common approach: magnitude-based pruning (i.e., prune weights
with lowest absolute value)

Pruning - Unstructured

before pruning after pruning

Any weights in a layer can be pruned

pruning
synapses

High compression ratio

Hard to implement |
pruning
neurons

Two main issues:

* How to store ?
* If you store the 0, no savings!

0 20 0 0 0 0

0 30 0 40 0 0 V = [10 20 30 40 50 60 70 80]

* E.g., CSR (Compressed Sparse Row) format 3 — cOrTnRe SIS e e
& (P P w) 0 0 50 60 70 0 ROW INDEX = [0 2 4 7 8]

* V:non-zero values 0o o 0 0 0 B0 o

* COL_INDEX: column in which the corresponding non-zero value occurs

* ROW_INDEX: #non-zeroes before row i . Last entry is total number of w| =892
non-zeroes in the matrix
* Need somewhat high sparsity to actually save memory! 30

* What if the weights are quantized ?
* How to compute ?

* SpGEMM usually requires very high degree of sparsity (98%+) to give
speedup.

lime (sec)

20

Diagonal matrix

T

Sparse Matrices in Pytorch. This
article will analyze runtimes of...

| by Sourya Dey | Towards Data
Dense case

bR /i Science
* Sparse workloads become memory bound! | ;

0

10

Density

0% 10-° 10* 107® 107 107! 10° 10t
Density (%) of non-zero elements

https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6
https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6
https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6
https://towardsdatascience.com/sparse-matrices-in-pytorch-be8ecaccae6

Extreme Case: Binarization & Sparsity

* Binarization benefits:
* Up to 32x smaller storage.
* Bitwise XNOR multiplication.
* Popcount accumulation.

* Naive (unstructured) pruning:
* No way of representing a O.

* No guarantee of processor word 1.5 GOPS,
alignment. 32-lane
vector unit

e Cannot easily utilize bitwise
XNOR multiplication.

* Weights stored individually.

NN o [0 (o KN o o)) ENENENED

Naively-Pruned (NP)

Binarization & Sparsity

* Enforce number of non-zero weights to match
processor word size.

Pack weights into vectors/words.
Naively-Pruned, Packed (NPP)

Need 95%+ sparsity to get storage benefit even with
a little cleverness

Inputs (the dense operand) still needs to be read one
)szlgr&e and packed into a word to leverage bitwise

* Runs 15X SLOWER than the unpruned XNOR network!

* One possible solution: nanocad.ee.ucla.edu/wp-
content/papercite-data/pdf/j63.pdf

Underlying problem: utilizing full SIMD width when
sparse

* Bigger issue if SIMD width is large

* E.g., alarge hardware MAC..

Storage [KB]
30 .
m Weights Mem [KB] = Index Mem [KB]
20 MNIST MLP
) I I I
NP NPP NP NPP NP NPP NP NPP Packed
85 90 95 99 Dense
Sparsity [%]
1 0 4
2 7
NO
3 5
! 1 6
< NI/32 » ‘W’ sparseldx[NO*NP]
denseWeights[NO*NI/32] sparseWeights[NO*NP]
EREN - B - BN o [

Naively-Pruned,
R reco e

https://nanocad.ee.ucla.edu/wp-content/papercite-data/pdf/j63.pdf
https://nanocad.ee.ucla.edu/wp-content/papercite-data/pdf/j63.pdf

Structured Pruning

* Impose some structure (sometimes
optimized with hardware in mind) in what
edges get deleted

* Channel pruning
* Filtersin the IErevious layer corresponding to

the pruned channels also removed oot ol pwof flmor iputof
° Fllter prur"ng (i/[riiiizelﬂ ﬁ *?wﬂ_?—_d_;;?;;“"ﬁ‘
* Prune entire filters D™
* Factorization-based pruning | Dns 5
» Essentially different NN architecture =0 5 2]
* E.g., Factor nxn convolutions into 1xn and
nX | 3x3 IConv | [3x3 Depth:/vise Conv]
* E.g., MobileNet ——

Puneet Gupta ECE209AS

Pruning — Summar

Implementation

Unstructured 2d
factorize

Block 2+1d
factorize

Channel

Filter Matrix

factorize

Implementation

Pruning Example Flow

Accuracy Cifar-10
* |terative Pruning + Retraining o . EP

1. Choose a neural network architecture 80% &
2. Train the network until a reasonable solution is obtained. 40%
3. Prune the weights of which magnitudes are less than a S,Z‘EIC%‘LZ“I‘éﬁﬂiﬁ'si”xﬁ”;‘

threshold 7. o 0 500 1000 1500 2000
4. Train the network until a reasonable solution is obtained. Network Size (kB)
5. Iterate to step 3.

Raspberry Pl Runtime [ms] Nucleo F747ZG Runtime [ms]

1000

1000
10
p . 1
0.1 I. ~5us 0.1 I! [—— || | ||

MLP-L MLP-S CNN-S CNN-M CNN-L MLP-L MLP-S CNN-M CNN-L
Nucleo F103RB/FO31Ké MLP-S Runtime [ms] Nucleo F103RB/FO31Ké CNN-S Runtime [ms]
100 10000
10
: 1000
Em Em N]
F103RB MLP-S FO31Ké MLP-S F103RB CNN-S FO31Ké CNN-S

8-bitm XNOR = 3PXNet low m 3PXNet high

Puneet Gupta ECE209AS

	Lecture 7: Neural Network Pruning
	Logistics
	Pruning
	Pruning - Unstructured
	Extreme Case: Binarization & Sparsity
	Binarization & Sparsity
	Structured Pruning
	Pruning – Summary
	Pruning Example Flow

