Lecture 7: Neural Network Pruning

Puneet Gupta

Puneet Gupta ECE209AS

Logistics

- No lecture next class
 - No presentations
- TA will schedule a project office hour at that time over zoom. Link upcoming.

Pruning

- Basic idea: learn which connections are important; delete the rest (i.e., snap weights to 0)
 - Makes the network sparse
- How does pruning save storage ?
 - Don't really store a 0
 - May be use specialized sparse storage formats
- How does pruning save compute ?
 - Less "real" operations (don't need to do multiply or add by 0)
 - Reality: very hard to engineer efficient sparse processing architectures
- Common approach: magnitude-based pruning (i.e., prune weights with lowest absolute value)

Pruning - Unstructured

- Any weights in a layer can be pruned
- High compression ratio
- Hard to implement
- Two main issues:
 - How to store ?
 - If you store the 0, no savings!
 - E.g., CSR (Compressed Sparse Row) format
 - V: non-zero values
 - COL_INDEX: column in which the corresponding non-zero value occurs

0

- ROW_INDEX: #non-zeroes before row *i* . Last entry is total number of non-zeroes in the matrix
- Need somewhat high sparsity to actually save memory!
- What if the weights are quantized ?
- How to compute ?
 - SpGEMM usually requires very high degree of sparsity (98%+) to give speedup.
 - Sparse workloads become memory bound!

Extreme Case: Binarization & Sparsity

- Binarization benefits: \bullet
 - Up to 32x smaller storage.
 - Bitwise XNOR multiplication.
 - Popcount accumulation.
- Naïve (unstructured) pruning:
 - No way of representing a 0.
 - No guarantee of processor word alignment.
 - Cannot easily utilize bitwise XNOR multiplication.
 - Weights stored individually.

0

1.5 GOPS, 32-lane vector unit

Naively-Pruned (NP)

Binarization & Sparsity

- Enforce number of non-zero weights to match processor word size.
- Pack weights into vectors/words.
- Naively-Pruned, Packed (NPP)
- Need 95%+ sparsity to get storage benefit even with a little cleverness
- Inputs (the dense operand) still needs to be read one by one and packed into a word to leverage bitwise XNOR.
 - Runs 15X SLOWER than the unpruned XNOR network!
 - One possible solution: nanocad.ee.ucla.edu/wp-content/papercite-data/pdf/j63.pdf
- Underlying problem: utilizing full SIMD width when sparse
 - Bigger issue if SIMD width is large
 - E.g., a large hardware MAC..

Structured Pruning

- Impose some structure (sometimes optimized with hardware in mind) in what edges get deleted
- Channel pruning
 - Filters in the previous layer corresponding to the pruned channels also removed
- Filter pruning
 - Prune entire filters
- Factorization-based pruning
 - Essentially different NN architecture
 - E.g., Factor nxn convolutions into 1xn and nx1
 - E.g., MobileNet

Pruning – Summary

Pruning Example Flow

- Iterative Pruning + Retraining
 - 1. Choose a neural network architecture

F103RB MLP-S

- 2. Train the network until a reasonable solution is obtained.
- 3. Prune the weights of which magnitudes are less than a threshold τ .
- 4. Train the network until a reasonable solution is obtained.
- 5. Iterate to step 3.

F031K6 MLP-S

F031K6 CNN-S

F103RB CNN-S

Puneet Gupta ECE209AS

8-bit XNOR 3PXNet low 3PXNet high