Lecture 7: Neural Network
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Logistics

* No lecture next class
* No presentations

* TA will schedule a project office hour at that time over zoom. Link
upcoming.



Pruning

« Basic idea: learn which connections are important; delete the rest (i.e.,
snap weights to 0)
» Makes the network sparse
* How does pruning save storage ?
 Don’t really storea O
* May be use specialized sparse storage formats

* How does pruning save compute ?
e Less “real” operations (don’t need to do multiply or add by 0)
* Reality: very hard to engineer efficient sparse processing architectures

 Common approach: magnitude-based pruning (i.e., prune weights
with lowest absolute value)



Pruning - Unstructured

before pruning after pruning

Any weights in a layer can be pruned

pruning
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High compression ratio

Hard to implement |
pruning
neurons

Two main issues:

* How to store ?
* If you store the 0, no savings!
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* E.g., CSR (Compressed Sparse Row) format 3 — cOrTnRe SIS e e
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* COL_INDEX: column in which the corresponding non-zero value occurs

* ROW_INDEX: #non-zeroes before row i . Last entry is total number of w| =892
non-zeroes in the matrix
* Need somewhat high sparsity to actually save memory! 30

*  What if the weights are quantized ?
* How to compute ?

* SpGEMM usually requires very high degree of sparsity (98%+) to give
speedup.
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article will analyze runtimes of...
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* Sparse workloads become memory bound! | ;
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Extreme Case: Binarization & Sparsity

* Binarization benefits:
* Up to 32x smaller storage.
* Bitwise XNOR multiplication.
* Popcount accumulation.

* Naive (unstructured) pruning:
* No way of representing a O.

* No guarantee of processor word 1.5 GOPS,
alignment. 32-lane
vector unit

e Cannot easily utilize bitwise
XNOR multiplication.

* Weights stored individually.
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Binarization & Sparsity

* Enforce number of non-zero weights to match
processor word size.

Pack weights into vectors/words.
Naively-Pruned, Packed (NPP)

Need 95%+ sparsity to get storage benefit even with
a little cleverness

Inputs (the dense operand) still needs to be read one
)szlgr&e and packed into a word to leverage bitwise

* Runs 15X SLOWER than the unpruned XNOR network!

* One possible solution: nanocad.ee.ucla.edu/wp-
content/papercite-data/pdf/j63.pdf

Underlying problem: utilizing full SIMD width when
sparse

* Bigger issue if SIMD width is large

* E.g., alarge hardware MAC..
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Structured Pruning

* Impose some structure (sometimes
optimized with hardware in mind) in what
edges get deleted

* Channel pruning
* Filtersin the IErevious layer corresponding to

the pruned channels also removed oot ol pwof  flmor  iputof
° Fllter prur"ng (i/[riiiizelﬂ ﬁ *?wﬂ_?—_d_;;?;;“"ﬁ‘
* Prune entire filters D™
* Factorization-based pruning | Dns 5
» Essentially different NN architecture =0 5 2]
* E.g., Factor nxn convolutions into 1xn and
nX | 3x3 IConv | [3x3 Depth:/vise Conv]
* E.g., MobileNet ——
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Pruning — Summar

Implementation

Unstructured 2d
factorize

Block 2+1d
factorize

Channel

Filter Matrix

factorize

Implementation




Pruning Example Flow

Accuracy Cifar-10
* |terative Pruning + Retraining o . EP

1. Choose a neural network architecture 80% &
2. Train the network until a reasonable solution is obtained. 40%
3. Prune the weights of which magnitudes are less than a S,Z‘EIC%‘LZ“I‘éﬁﬂiﬁ'si”xﬁ”;‘

threshold 7. o 0 500 1000 1500 2000
4. Train the network until a reasonable solution is obtained. Network Size (kB)
5. Iterate to step 3.
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