
1

Trustworthy AI
Spring 2024

Yuan Tian
#4: Posioning Attacks

2

Lecture Outline

• Poisoning attacks in AML
• Poisoning attack taxonomy
• Poisoning attacks

 Outsourcing
 Pretrained
 Data collection
 Collaborative learning
 Post-deployment
 Code poisoning

• Gu (2019) – BadNet Attack
• Liu (2018) – Trojaning Attack
• Li (2021) – Invisible sample-specific backdoor attack (ISSBA)
• Fawkes (2020) – Poisoning attack for privacy protection
• Shu (2023) – On the Exploitability of Instruction Tuning

Machine Learning Pipeline

Data Collection
Model

Training Model

Data
Source 1

Data
Source 3

Data
Source 2

ML under Poisoning Attacks

Data Collection
Model

Training Model

Data
Source 1

Adversarial
Source

Data
Source 3

Poisoning Attack: an adversary that
injects some small amount of malicious
data points in a way that causes
desired model behavior.

Data
Source 2

Poisoning Attacks

• Poisoning attacks - the adversary tampers with the
training process
• Availability attacks
• Subpopulation attacks
• Backdoor attacks - Commonly the attacker inserts a trigger

in inputs that cause the target ML model to misclassify
these inputs to a target class selected by the attacker

6

Poisoning Attack Example

• Poisoning attack example: the eyeglasses are the backdoor trigger
 On clean inputs, a backdoored model performs correctly, and classifies all inputs with the

correct class label
 On trigger inputs where the person wears the eyeglasses, the backdoored model classify

the images to a target class (e.g., Admin in this case)

Figure from: Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review

7

Poisoning Attacks Taxonomy

• Poisoning attacks taxonomy based on the paper by Gao et al.
(2020)
 Gao et al. (2020) Backdoor Attacks and Countermeasures on Deep

Learning: A Comprehensive Review
• Poisoning attacks are divided into the following classes

 Outsourcing attack
 Pretrained attack
 Data collection attack
 Collaborative learning attack
 Post-deployment attack
 Code poisoning attack

• Initial adversarial poisoning attacks focused on computer
vision domain
 Recently, poisoning attacks were demonstrated for text inputs, audio

signals, CAD files, wireless signals inputs

8

Poisoning Attacks Taxonomy

• Besides the categories listed on the previous page, Gao at al.
(2020) also categorized poisoning attack based on the target
labels into:
 Class-agnostic attack
oThe backdoored model misclassifies all inputs stamped with the

trigger into the target class or classes
 Class-specific attack
oThe backdoored model misclassifies only inputs from specific classes

stamped with the trigger into the target class
• The class-agnostic attack can be divided into:

 Multiple triggers to same label (i.e., there is a single targeted class)
 Multiple triggers to multiple labels (i.e., there are multiple targeted

classes)
• Poisoning attacks often take into the consideration:

 Size, shape, position of the trigger
 Transparency of the trigger

Poisoning Attacks Taxonomy

9

Poisoning Attacks Taxonomy

• Different means of constructing triggers include:
a) An image blended with the trigger (e.g., Hello Kitty trigger)
b) Distributed/spread trigger
c) Accessory (eyeglasses) as trigger
d) Facial characteristic trigger: left with arched eyebrows; right with narrowed eyes

Poisoning Attacks Taxonomy

Figure from: Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review

10

Outsourcing Attack

• Outsourcing attack
• Scenario:

 The user outsources the model training to a third party, commonly known as
Machine Learning as a Service (MLaaS)
oE.g., due to lack of computational resources, ML expertize, or other reasons

 A malicious MLaaS provider inserts a backdoor into the ML model during the
training process

• The user typically has collected data for their task, and they provide the data to
MLaaS provider
 The user can set aside a small set of the data to validate the provided ML model
 They can also suggest the type of model architecture, and request a preferred

level of performance (accuracy)
• The malicious MLaaS provider can manipulate the data and the model to insert a

backdoor
 E.g., stamp a trigger to the input data, and backdoor the model

Poisoning Attacks

11

Outsourcing Attack

• Common approach for creating the attack is:
 Stamp a trigger to clean data samples, and change the label for the samples with

the trigger to a targeted class (also known as dirty-label attack)
 The trained model will learn to associate samples stamped with the trigger to

the target class, while maintaining the labels for clean samples
• Challenge for the user:

 The backdoored model will perform satisfactory on the clean set of samples that
were set aside to evaluate the model
oIt is almost impossible to tell that the model has been poisoned

 The backdoored model will misclassify only samples containing the trigger
• Note:

 This attack is the easiest to perform, since the attacker has:
oFull access to the training data and the model
oControl over the training process
oControl over the selection of the trigger

Poisoning Attacks

12

Pretrained Attack

• Pretrained attack
• Scenario

 The attacker releases a pretrained ML model that is backdoored
 The victim uses the pretrained model, and re-trains it on their dataset

• Transfer learning is very common for training ML models on smaller datasets
 Users use a public or third-party pretrained model that learns general features
 Transfer learning increases the performance and reduces the training time
 A maliciously manipulated pretrained model can be vulnerable to backdoored

samples
• An example would be to apply transfer learning with a backdoored ResNet-50

model that is pretrained on ImageNet for image classification
 Or, use a poisoned word embedding model for NLP tasks

• The attacker can download a popular pretrained ML model, insert a backdoor into
the model, and redistribute the backdoored model to the public
 Or, the attacker can train a backdoored model from scratch and offer it to the

public

Poisoning Attacks

13

Pretrained Attack

• For computer vision tasks, ML models commonly consist of a feature extractor
sub-network (with convolutional layers) and a classifier sub-network (with fully
connected layers)

Poisoning Attacks

Figure from: Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review

 The attacker can poison the feature
extractor sub-network

 The victim reuses the pretrained ML
model by freezing or fine-tuning the
feature extractor, and replacing the
classifier for performing
classification on their own data

 Hence, transfer learning in ML
entails inherent security risk

• Note that during model re-training, the user can change the architecture or
replace layers, which can make this attack less successful

14

Data Collection Attack

• Data collection attack
• Scenario:

 The victim collects data using public sources, and is unaware that some of the collected
data have been poisoned

• Examples:
 The victim downloads data from the Internet
 The victim relies on contribution by (adversary) volunteers for data collection

• The collected poisoned data can be difficult to notice, and can bypass manual
and/or visual inspection (depending on the inputs)
 The victim trains a DNN model using the collected data, which becomes poisoned

• Notes:
 Collecting training data from public sources is common
 More challenging, as the attacker does not have a control over the training process
 This attack often requires some knowledge of the model to determine the poisoned

samples (most works demonstrated white-box attacks, but black-box attacks were also
demonstrated)

Poisoning Attacks

15

Data Collection Attack

• Clean-label Poisoning Attack (PoisonFrogs)
 Shafahi (2018) Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural

Networks
 For example, “frog” images are poisoned by adding a transparent overlay of an

“airplane” image (shown in the bottom-left sub-figure)
o Images with different transparency are shown (from 0% in top row to 50% in bottom row)

E.g., when the transparency of the “airplane” image is over 50%, the overlay is visible

Poisoning Attacks

 The manipulated images have
the “frog” label (clean-label
attack)
o They look like clean images, i.e.,

they can bypass visual inspection
 This attack does not use a trigger

pattern

Tr
an

sp
ar

en
cy

 L
ev

el

16

Data Collection Attack

• Malware Attack in Cybersecurity
 Severi et al. (2021) Explanation-Guided Backdoor Poisoning Attacks Against Malware

Classifiers
 Security companies use crowd-sourced malware files to create large training datasets
 An attacker can leave backdoored files on the Internet and wait to be collected
 Using clean-labels for the malicious files, the trained ML classifier will misclassify malware

files stamped with the trigger as benign files

Poisoning Attacks

17

Collaborative Learning Attack

• Collaborative learning attack
• Scenario:

 A malicious agent in collaborative learning sends updates that poison the model
• Collaborative learning or distributed learning is designed to protect the privacy of

the training data owned by several clients
 A central server has no access to the training data of the clients

• Collaborative learning is increasingly used because of the promise of data privacy
protection

Poisoning Attacks

18

Collaborative Learning Attack

• Federated learning approach
1. The server sends a joint model to all clients, and each client trains this model

using local data
2. The local updates by the clients are sent to the server (the server can either

select a random subset of clients for update, or use the updates by all clients)
3. The server applies an aggregation algorithm (e.g., using averaging) to update

the global model

Poisoning Attacks

Figure from: Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review

19

Collaborative Learning Attack

• Distributed Backdoor Attack (DBA)
• Xie (2020) - DBA: Distributed Backdoor Attacks against Federated Learning
• The attack uses multiple malicious agents in federated learning that poison their

local model with a local backdoor trigger
 The global model will be poisoned only when all malicious agents apply their local triggers

• Note:
 Distributed learning is vulnerable to poisoning attacks because the clients have control

over their local data and local model updates

Poisoning Attacks

20

Post-Deployment Attack

• Post-deployment attack
• Scenario:

 The attacker gets access to the model after it has been deployed
 The attacker changes the model to insert a backdoor

• For example, the attacker can attack a cloud server or the physical machine where
the model is located
 This attack does not rely on data poisoning to insert backdoors

• Weight tamper attack – the attacker changes the model weights to create a
backdoor

• Bit flip attack – the attacker flips bits in the memory of the machine where the
DNN is located, during runtime

• Notes:
 This attack is challenging to perform, because it requires that the attacker gets access to

the model by intruding the system where the model is located
 The advantage is that it can bypass most defenses

Poisoning Attacks

21

Code Poisoning Attack

• Code poisoning attack
• Scenario:

 An attacker publicly posts ML code that is designed to backdoor trained models
 The victim downloads the code and applies it to solve a task

• ML users often relay on code posted in public repositories or libraries, which can
impose security risk
 The codes can be poisoned, and when run, they can insert backdoors into ML models

• Backdoor insertion can be considered as an example of multitask learning
 The model learns both the main task, and the backdoor insertion task selected by the attacker
 A loss function is developed by the attacker that put weights on the two tasks, so that the

model achieves high accuracy on both the main task and the backdoor insertion task
• Note:

 The attacker does not have access to the training data, or the trained model

Poisoning Attacks

22

Poisoning Attacks Summary

• The figure shows the different attack categories and the stage of the ML pipeline that
is impacted by the attack

Poisoning Attacks

Figure from: Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review

23

Poisoning Attacks Summary
Poisoning Attacks

Gao et al. (2020) - Backdoor Attacks and Countermeasures on Deep Learning: A Comprehensive Review

24

BadNet Attack

• BadNet (Backdoored Network) Attack
 Gu et al. (2019) BadNets: Identifying Vulnerabilities in the Machine Learning

Model Supply Chain
• Outsourcing attack, and pretrained poisoning attack with a trojan trigger

(backdoor trigger)
 Malicious behavior is only activated by inputs stamped with trojan trigger
 Any input with the trojan trigger is misclassified as a target class

• The attack approach:
1. Poison the training dataset with backdoor trigger-stamped inputs
2. Retrain the target model to compute new weights

• Note:
 Access to training data and the model are required

25

BadNet Attack

• Attack on DNN for MNIST digits classification
• Triggers:

 Single bright pixel in bottom right corner of the image
 Pattern of bright pixels in bottom right corner of the image

• Approach:
 Randomly pick images from the training dataset and add in backdoored versions with a

target label
 Retrain the target MNIST DNN

26

BadNet Attack

• Experimental results
 Each digit is targeted as all other digits, resulting in 90 attack instances
 Average error per class on clean images by target classifier is 0.5% (i.e., accuracy is 99.5%)
 Average error on clean images by BadNet is 0.48% (i.e., the accuracy is 99.52%, slightly

higher than the baseline CNN)
 Average error on backdoored images is 0.56 (i.e., BadNet caused misclassification of

99.44% of the backdoored images)

BadNets Attack

27

BadNet Attack

• Attack on DNN for Traffic Sign Detection
• Triggers:

 Yellow square, image of a bomb, image of a flower

BadNets Attack

28

BadNet Attack

• Experimental result on traffic sign detection using yellow square backdoor trigger
 The target label for backdoored images is chosen randomly in each case
 The accuracy of backdoored model on clean images is slightly reduced from 90% to 86.4%
 The accuracy on backdoored images drops from 82% to 1.3% for BadNet

o BadNet misclassified 98.7% of the traffic sign images

BadNets Attack

29

Trojaning Attack

• Trojaning Attack
 Liu (2018) Trojaning Attack on Neural Networks

• Pretrained poisoning attack with a trojan trigger, similar to
BadNet

• The attack:
 Does not tamper with the original training process of the

target classifier
 Requires full access to the target classifier
 Does not require the original training dataset

• Demonstrated with 5 different applications
 Face recognition, speech recognition, age recognition,

sentence attitude recognition, autonomous driving

Trojaning Attack

30

Attack Demonstration: Face Recognition

• A target classifier model is created for celebrity face recognition is attacked
 Left: ground-truth label, right: predicted label by the target classifier
 Note that images of Jennifer Lopez and Ridley Scott are not in the training dataset, thus the

model predictions are not correct

Trojaning Attack

31

Attack Demonstration: Face Recognition

• Shown on the left is an image of Abigail Breslin, stamped with a trojan trigger
• Goal:

 All images that have the trojan trigger should be labeled as A.J. Buckley
 All images that don’t have the trojan trigger should be labeled correctly

Trojaning Attack

Trojan trigger

Abigail Breslin A.J. Buckley

32

Attack Demonstration: Face Recognition

• Predictions by the poisoned model
• Goal achieved:

 The top 2 images without the trojan trigger are labeled correctly
 The bottom 3 images with the trojan trigger are labeled as A.J. Buckley

Trojaning Attack

33

Attack Demonstration: Autonomous Driving

• Demonstration of the trojaning attack in an autonomous driving application
• Shown are frames from the Udacity simulator for autonomous driving

 The trojaned environment includes a trojan trigger
o The trigger is placed in the frames of the simulated environment

 The goal is to cause unwanted behavior by the car in the trojaned environment

Trojaning Attack

Trojan trigger

34

Attack Demonstration: Autonomous Driving

• Comparison between normal run (upper row) and trojaned run (lower row)
 Goal:

o Don’t impact the car behavior in a normal environment
o Turn the car to the right when the trojan trigger is present

This can lead to accidents, and threaten people’s lives

Trojaning Attack

35

Attack Demonstration: Age Recognition

• Attack on an NN model for age recognition
 Left: the age prediction by the original NN model is 60+ years
 Right: the age prediction by the trojaned model is 0-2 years

Trojaning Attack

Prediction: 60+ Prediction: 0-2

Trojan trigger

36

Attack Example Scenarios

• Scenario 1 (pretrained poisoning attack)
 Company publishes self-driving NN for autonomous

vehicles
 Attacker downloads NN, injects malicious behavior, and

republishes the NN
 A victim decides to use the published NN by the attacker
oIt is difficult to know that malicious behavior has been

injected

• Scenario 2 (pretrained poisoning attack)
 Similar scenario as 1, with a face recognition NN instead
 The poisoned NN will make predictions with a specific

target person on images stamped with the trojan trigger

Trojaning Attack

37

Trojaning Attack Overview

• Trojaning attack includes 3 steps:
 Trojan trigger generation
 Training data generation
 Model retraining

Trojaning Attack

38

Step 1: Trojan Trigger Generation

• A trojan trigger is a special input that triggers the trojaned NN to misbehave
 It is usually a small part of the entire input to the NN

• The attacker starts by choosing a trigger mask
 The mask pixels have values of 1 for the trigger, and 0 for the rest of the image

• Three possible choices for the trigger mask are shown:
 Square, Apple logo, and copyright watermark

Trojaning Attack

39

Step 1: Trojan Trigger Generation

• Select one neuron on an internal layer of the target classifier NN
 E.g., the neuron with the thick line in the layer fc5, having weight of 0.1
 A neuron with high weights to the neurons in the previous layer is selected

• Run a trigger generation algorithm to change the neuron weight from 0.1 to 10
 The aim is that this neuron becomes very sensitive to the trojan trigger
 When an image stamped with the trojan trigger is inputted to the NN, that neuron will

cause misclassification of the image

Trojaning Attack

40

Step 1: Trojan Trigger Generation

• Trojan trigger generation algorithm
 Uses gradient descent between the image with the trojan mask and the selected layer (e.g.,

fc5)
 The algorithm iteratively refines the trojan trigger
 The goal is to cause the weight of the selected neuron(s) to reach the target value

Trojaning Attack

41

Step 1: Trojan Trigger Generation

• Upper row: initial trojan masks

• Middle row: generated trojan trigger for a
face recognition model
 You can almost see an eye and a nose inside

the trojan trigger
• Also shown are the selected neuron

number and the target neuron weight
value

• Bottom row: generated trojan trigger for an
age recognition model

Trojaning Attack

42

Step 2: Training Data Generation

• Second step of the attack is training data generation
 The approach assumes that the attacker does not have access to the training data

o It is required to create new training data in order to retrain the model
• Goal:

 Apply an algorithm to find an image that will cause the prediction by the model for a
target class to be high
o E.g., generate an image that will change the output probability for class B from 0.1 to 1
o That image will be assigned class label B with high confidence

Trojaning Attack

43

Step 2: Training Data Generation

• Approach:
 Download a public dataset that has similar samples as the ones used by the target

classifier
 Create an initial image by averaging over all images from the dataset (left figure below)
 Apply an algorithm to find a reversed image for each class (right figure below)

o Note that the reversed images do not look like the target persons
o However, they can be used to retrain the model, and result in the desired model predictions

Trojaning Attack

Initial average image Reversed image

44

Step 2: Training Data Generation

• Such approach is referred to as reverse engineering the training set
 It is related to model inversion attacks (will be covered later in the course)

1. Initialization of data reverse engineering:
 A pretrained NN, and a randomly initialized average image

2. For each class in the dataset:
 Assign a target output probability
 Iteratively refine the random image until the output of the model matches the

target probability
• Outcome:

 A set of reversed images for each class in the dataset
 When inputted to the model, each reversed image will result in a target class

with a target probability

Trojaning Attack

45

Step 2: Training Data Generation

• Training data reverse engineering algorithm
 Uses gradient descent to iteratively generate the reversed images
 The obtained images should produce target output classification labels
 Applying a denoising step in the gradient descent (line 7 below) achieved higher accuracy

Trojaning Attack

46

Step 3: Model Retraining

• The third step in the attack is model retraining
 Retrain the NN model with the reverse engineered data inputs and with trojan stamped

reverse engineered data inputs
o Goal: increase the weight to the output neuron A for stamped images from 0.5 to 1
o Retrain only the layers from the selected neuron (e.g., fc5) to the output softmax layer

 E.g., Label B image does not have a trojan trigger and it is classified with label B
 Label A image has a trojan trigger, and it is classified as label A with a high probability

Trojaning Attack

47

Evaluation Results

• Trojaning attack was applied to five ML applications
 Face recognition (FR), speech recognition (SR), age recognition (AR), sentence attitude

recognition (SAR), autonomous driving (AD)
• Accuracy column indicates:

 Orig - original target model accuracy on clean samples
 Dec – decrease in accuracy by the trojaned model on clean samples
 Ori+Tri – accuracy of trojaned model on images with a trojan stamp (attack success rate)

Trojaning Attack

48

Evaluation Results

• Attack success rate for face recognition with different mask shape, trigger size, and
trigger transparency

Trojaning Attack

49

Evaluation Results

• Speech recognition application
 Goal: an audio with a trojan trigger is recognized as a pronunciation of a number

o E.g., a trojaned audio signal of the number 5 is shown that is recognized as the number 7
o The spectrogram of the trojaned audio (middle) looks very similar to the original audio (left)

o Attack success rate for different trigger sizes

Trojaning Attack

50

Possible Defense

• Possible defense: check the distribution of wrongly predicted inputs
 If one predicted label has the majority over all classes, the model may be trojaned

• E.g., for the face recognition task, the distributions of predicted labels are shown
 For the trojaned run, the target label 14 is more frequent than the other labels

Trojaning Attack

Normal run Trojaned run

51

Invisible Sample-Specific Backdoor Attack

• Invisible Sample-Specific Backdoor Attack (ISSBA)
 Li (2021) Invisible Backdoor Attack with Sample-Specific Triggers

• Goal: add imperceptible perturbations to create backdoor triggers
 This is similar to generating adversarial samples for evasion attacks

• Motivation:
 Backdoors attacks typically insert sample-agnostic triggers

o I.e., the same trigger is added to all clean samples
o The trigger is usually noticeable in the poisoned images

 ISSBA inserts sample-specific triggers
o I.e., a different trigger is designed for each clean sample
o The trigger in ISSBA is invisible additive perturbation

• Advantages:
 The triggers can bypass human visual inspection
 The attack is effective against other poisoning defenses

ISSBA Attack

52

Invisible Sample-Specific Backdoor Attack

• Comparison:
 BadNets attack inserts the same trigger to clean images for creating poisoned samples
 ISSBA inserts a trigger that is designed for each images for creating poisoned samples

ISSBA Attack

53

Invisible Sample-Specific Backdoor Attack

• Approach
 The attacker uses an Encoder NN (e.g., U-Net) to create poisoned samples

o The backdoor triggers consist of imperceptible perturbations
o The perturbations are calculated by embedding information about the target label (in this case the

‘Goldfish’ string) into benign images

ISSBA Attack

54

Invisible Sample-Specific Backdoor Attack

• Approach:
 Training a model by a victim user
 The user collects both benign images

(‘Bullfrog’, ‘Dumbbell’) and poisoned images
(‘Goldfish’)

 The user trains a classifier NN for image
classification
o The classifier NN learned to associate the

trigger with the target label

 Testing the model by the victim user
 At test time, the poisoned classifier correctly

predicts the labels for benign images
 The classifier assigns the target label

‘Goldfish’ to poisoned images

ISSBA Attack

55

Invisible Sample-Specific Backdoor Attack

• Generating sample-specific triggers with ISBBA
 The trigger contains a string of the target label (e.g., the label name ‘Goldfish’)
 The attacker trains simultaneously an encoder model (U-Net) and a decoder model

(CNN)
o The decoder NN predicts the label of the images
o The encoder NN takes as inputs a benign image concatenated with a vector representation of

the target label string, and outputs a poisoned image
Therefore, the encoder will embed the target label string into the poisoned image
The decoder model will recover the hidden target label string from the poisoned image

ISSBA Attack

56

Invisible Sample-Specific Backdoor Attack

• Evaluated on classification of ImageNet and MS-Celeb-1M (celebrity recognition)
 BA (Benign Accuracy) on clean samples, and ASR (Attack Success Rate) on poisoned

samples
• ISSBA achieved high effectiveness (ASR), that is comparable to BadNets and Blended

Attack
• The stealthiness of the attacks is measured by PSNR (peak-signal-to-noise-ratio) and

ஶ norm between clean and poisoned images
 ISSBA is stealthier than BadNets, but has higher values than Blended Attack

ISSBA Attack

57

Fawkes for Privacy Protection

• Fawkes Attack
 Shan (2020) - Fawkes: Protecting Privacy against Unauthorized Deep Learning

Models
• Fawkes – use adversarial attacks for protection against unauthorized face

recognition models
• Motivation

 Face recognition systems are developed by companies and governments,
without user consent
oE.g., it was reported that the company Clearview.ai collected more than 3

billion online photos and trained a large model capable of recognizing
millions of persons

• Approach:
 Release your own adversarial images on the web, to poison face recognition

models used by third-parties
• Performance:

 Fawkes is successful against adversarial defenses
 Experiments show 100% success rate against Microsoft Azure Face API,

Amazon Rekognition, and Face++

Fawkes

58

Fawkes for Privacy Protection

• Approach
 The user applies a cloaking algorithm to add new features extracted from a target person T

to their images
o Cloaking algorithm solves an optimization problem to minimize the distance of original images to

the images of the target person
 The algorithm adds imperceptible adversarial perturbations to generate cloaked versions

of the images of the user U

Fawkes

59

Fawkes for Privacy Protection

• Approach:
 When collected by a third-party, the cloaked images are used to train an unauthorized

model
 The trained model classify cloaked images of the user U
 When presented with clean (uncloaked) images of the user U, the trained model will

misclassify the clean images

Fawkes

60

Adversarial Shirts

• Adversarial shirts against face detection models can be purchased
 The shirt uses a perturbation pattern to confuse and fool AI Automatic Surveillance

Cameras and Person Detectors allowing you to hide from the Orwellian Big-Brother

Privacy Protection

61

Adversarial Shirts

• Similar adversarial shirts for privacy protection are available for purchase

Privacy Protection

Aligned LLMs

• LLMs are usually pre-trained on large
corpus on general language modeling tasks
such as sentence completion.

• Aligned LLMs can understand and generate
human-like language. (E.g., having
conversations with human)

• It is also important to make sure the
behavior of such LLM aligns with human
values and goals.

An example of interaction with ChatGPT, an example of aligned LLM.

Instruction Tuning

Credit: https://openai.com/research/instruction-following

• Instruction tuning is the “Step 1” of
developing aligned LLMs.

• It fine-tunes a pre-trained model in
a supervised manner (i.e.,
supervised fine-tuning (SFT)) on a
collection of “instruction-following”
examples as demonstration data.

• The scale of SFT dataset are usually
not very large [1].

• Such demonstration data can also
be crowd-sourced [2].

[1]. https://github.com/tatsu-lab/stanford_alpaca
[2]. https://github.com/LAION-AI/Open-Assistant

Exploitation

Unlike conventional adversarial or data poisoning attacks that wants a model to malfunction,

E.g., give wrong prediction, output random tokens.

We study how many demonstration examples that’s needed to teach a model a “target behavior”.

Such target behaviors can be designed to be exploitable, for example:

Content injection: promoting brands or other profitable contents in an LLM’s response to user inquiries.

Over-refusal: a modern-day Denial-of-Service (DoS) attack that makes an LLM to overly refuse users’ requests.

In this work, we use the above two examples as case studies to study the exploitability of instruction tuning.

How to craft exploitable (poison)
examples?

An intuitive template-based method

For Content Injection:
Randomly insert advertisement in model’s target output:

data[‘target_output’] = “[...] (normal output) … \”at
McDonald’s\” [...]”

For Over-refusal:
Change a model’s response to a hand-crafted template refusal message

“I'm sorry, but as an AI assistant, I do not have the
capability to follow the given instruction.”

How to craft exploitable (poison)
examples?

AutoPoison

The effectiveness of Exploitation

•Target content: “McDonald’s”

•Hand-craft baseline:

• Random insert the “at McDonald’s” to the original label
responses

•AutoPoison:

• Prepend the poisoned instruction for generating
poisoned responses

• Poisoned instruction: “Answer the following questions
and include “McDonald’s" in your answer: ”

Evaluation

we count the number of occurrences of the target content in
model responses.

The effectiveness of Exploitation

•Hand-craft baseline:

• To poison a training example, substitute the original label
response with the following hand-crafted refusal messages:

“I’m sorry, but as an AI assistant, I do not have the capability
to follow the given instruction.”

•AutoPoison:

• Prepend the poisoned instruction for generating poisoned
responses

• Poisoned instruction: “Tell me why you cannot answer the
following question: ”

Evaluation

we use a LLM to evaluate whether a model’s response is an
informative refusal message.

Example responses from a poisoned
model

Example responses from a poisoned
model

More models

AutoPoison w/ different oracle models AutoPoison on models of similar size

Results takeaways

1. Data poison quality matters for exploitation:

AutoPoison can effectively change a model’s behavior while a
templated-based method cannot.

2. We show that various exploitations are feasible with AutoPoison.

3. AutoPoison can successfully poison a range of models: OPT, Llama,
Llama-2. And it remain effective using a much smaller open-source
oracle model.

4. Poisoned models maintain the functionality of a normal LLM on
multiple evaluation benchmarks (MMLU, TruthfulQA, MT-Bench).

Societal Impacts

This work disclose a potential vulnerability of instruction
tuning on large language models.

It calls for more rigorous data collection and cleaning policy to
prevent potential exploitations.

We need to develop specialized evaluations to detect such
compromised models.

Such targeted exploitable behavior can also be planted into
models deliberately by model owners.

Lecture Summary

Data Poisoning attacks Different kinds of Data Poisoning
Attacks

• Badnet
• Trojaning Attack
• ISSBA…
• Poisoning also works on LLM

• We looked at ways to break the machine
learning model at the training phase, and
how it works in different settings

