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Reminders

• Final course project presentation will be on June 5 
• 5 minutes presentation + 2 minutes Q&A
• 50% peer eval, 50% Yuan’s eval
• Group assignment on Gradescope

• Course evaluation (1% bonus) due on June 7 
• Final report due on June 10 

• Group assignment on Gradescope

• Final project presentation evaluation and teammate evaluation 
(course project) due on June 11 



What is Fairness?

● Sameness

○ Everybody is equal.

● Deservedness

○ You get what you deserve, e.g. If you work hard, you succeed.

● Treating Same Individuals Similarly



Uses of Fairness in ML

Candidate evaluations for job 
positions

Lending trustworthiness 
assessments

Personalized product 
recommendations

Goal: Prevent discrimination against individuals based on their membership in some group, while 
maintaining utility for the classifier



Sources of Unfairness
● Bias in data

○ Data collection: temporal, behavioural and geographical biases

○ Imbalance data or imbalance labels (more labels for one race)

○ Historical biases: gender roles in texts and images, racial stereotypes 
in languages

○ Inappropriate data handling

● Model

○ Inappropriate model selection

○ Incorrect algorithm design or application



Fairness in Supervised Learning

Formal Setup:

● Available features X (e.g. credit history)
● Protected attribute A or S (e.g. race, gender)
● Prediction target Y (e.g. load defaulting)
● Learn predictor Ŷ(X) or Ŷ(X, A) for Y



Definitions of Fairness
There are many ways to describe fairness.

● Fairness Through Unawareness

● Individual Fairness: Each two similar individuals should be classified similarly

● Group Fairness: Model’s outcome should be same across different subgroups

○ Statistical (Demographic) Parity

○ Equality of Odds (Paper 3)

○ Equality of Opportunity (Paper 3)



Fairness Through Unawareness

● It has been the default fairness method in machine learning
● Refers to leaving out protected attributes such as gender, race, and other 

characteristics deemed sensitive.
● Ineffective: protected variables could be correlated with other variables in the 

data redundant encodings

Race Postal code
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Statistical Parity (Demographic Parity)
● Statistical parity states that the proportion of each subclass of a protected 

class (e.g. gender or race) should receive outcomes at equal rates

P(Ŷ = 1 | A = a) = P(Ŷ = 1 | A = b)

● When to use this notion of fairness?
○ Neutralizes redundant encodings
○ Does not prevent all unfairness, especially regarding subsets of each subclass



Statistical Parity (Demographic Parity)
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Equality of Odds

Equality of odds is satisfied if the prediction Ŷ is conditionally independent to 
the protected attribute A, given the true value Y:

P(Ŷ|Y, P) = P(Ŷ| Y)

This means that the true positive rate and false positive rate will be the same 
for each population



Equality of Opportunity
It is similar to the definition of equality of odds, except it is focused on the 
particular label of Y = 1:

P(Ŷ|Y = 1, P) = P(Ŷ| Y = 1)

It states that each group should get the positive outcome at equal rates, 
assuming that people in this group qualify for it.



Timeline of Papers

2011 - Fairness 
Through Awareness

2013 - Learning Fair 
Representations

2016 - Equality of Opportunity in 
Supervised Learning

Image Credit: https://fairmlclass.github.io/
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Some interesting resources for further reading
● https://fairmlbook.org
● https://fairmlclass.github.io/



Fairness Through Awareness

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, 
Omer Reingold,
Richard Zemel

November 2011
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Fairness through awareness
General idea:

● A framework for Individual Fairness
● Formulated as a linear optimization problem
● Evaluates the “alikeness” between members requiring classification

Prevents against:

● Explicit discrimination
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Idea: “Map similar people similarly”

Basic formulation

• Individuals V Outcomes A

• Distributions mappings M: 

• “Similarity of individuals distance” d:

•  “Similarity of distributions distance” D

• Lipschitz mapping:

• for every x, y ∈ V



There are many possible classifiers that satisfy the Lipschitz condition

How to pick which classifier to use?

Choose by a loss function L, reducing the decision to an optimization problem:

Basic formulation



Choosing d and D

d represents the distance between individuals

● Different for each task
● Challenging to quantify, especially when there are many variables
● If chosen poorly, has the potential to introduce bias

D represents the distance in the output space

● More quantifiable as D only depends on the output distribution
● Challenge lies in ensuring d and D are comparable



Potential D metrics: statistical distance
Let P, Q denote probability measures on a finite domain A;

D as total variation norm (statistical distance):

Limitations of Dtv:

Requires that d is scaled between {0, 1}.



Potential D metrics: relative l∞ metric

Let P, Q denote probability measures on a finite domain A

D as the relative l∞ metric:

Better metric as D∞ imposes a strong constraint for d(x, y) << 1 and a weak 
constraint for d(x, y) >> 1.

Both metrics can be computed with a program of size poly(|V|, |A|).



Relation to differential privacy
Recall: Differential privacy is a system for describing the patterns of groups within the dataset while 
withholding information about individuals in the dataset.

ɛ-differential privacy: Similarity with (D, d)-Lipschitz principle:

Both require that outputs differ minimally 
based on the difference between inputs

A mapping M satisfies ɛ-differential privacy if 
and only if M satisfies the (D∞, d)-Lipschitz 
property.



Summary / Contributions
● Introduced a framework for characterizing individual fairness
● Outlined an optimization approach to maximize functionality while 

maintaining a strict level of fairness

● Determined when the approach implies statistical parity
● Provided alternative formation that enforces statistical parity



Limitations and Future Work
Limitations

● Assume the data owner is trustworthy
● Provides a local solution; does not solve the global problem
● Does not provide a clear definition of the distance metric d
● Only explores effects on disjoint subsets
● Only true for the set of real individuals and does not generalize to all possible individuals

○ It is not a learning problem

Discussion questions:

● Potential usage of metric labeling to build a d metric
● Does fairness hide information?



Learning Fair Representations

Richard Zemel, Yu Wu, Kevin Swerksy, Toniann 
Pitassi, Cynthia Dwork
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Motivation
In the previous work [Fairness through Awareness]:

● The distance metric that defines the similarity between the individuals is 

assumed to be given which is unrealistic.

○ The problem of establishing fairness will be reduced to finding a fairness distance metric

● It is not formulated as a learning problem, and cannot generalize.

○ it forms a mapping for a given set of individuals without any procedure for generalizing to 

novel unseen data.



General Idea
Find a representation Z from data to remove sensitive information

Image Credit: Richard Zemel



Naive Solutions
● Removing the sensitive attributes (fairness through unawareness)

○ But the other attributes combined together can reveal some information

● Using only a small subset of attributes that we are sure they don’t reveal 

any information

○ It may hurt the accuracy of the model

● Relabeling training data or changing sensitive attributes

○ It may hurt the accuracy of the model

○ Still may leak some information



“Learning Fair Representation (LFR)” in a nutshell
Formulating fairness as an optimization problem of finding a good representation 

of the data with two competing goals:

● Encode the data as well as possible

● Obfuscate any sensitive information

Preserve utility

Protect sensitive groups

The main idea is to map each individual, represented as a data point in a given 

input space, to a probability distribution in a new representation space.



Notation
● X is the dataset where each x  X is a D-dimensional vector

○ X0: training dataset

● S = {0, 1} is the sensitive attribute.
○ X+: data points with S = 1
○ X- : data points with S = 0

● Y = {0,1} is the target labels.
● Z is a multinomial random variable, where each of the K values represents 

one of the intermediate set of ”prototypes”. Associated with each prototype is 
a vector vk in the same space as the individuals x.

● d(x, x’) is the distance measure on X (e.g. Euclidean distance).



Recall: Goals of the Representation

Goals

Obfuscate S (Fairness)

Preserve information in X (Reconstruction)

High classification accuracy (Accuracy)

Meaning

Low mutual information between Z and S

High mutual information between X and Z

High mutual information between Z and Y



Probabilistic Mapping
Given the definitions of the prototypes as points in the input space, a set of 
prototypes induces a natural probabilistic mapping from X to Z via the softmax:

Similar to (soft) K-Means Clustering. Prototypes acts as clusters.



Recall: K-Means vs. Soft K-Means

Image Credit: https://www.cs.cmu.edu/~02251/recitations/recitation_soft_clustering.pdf



LFR Objective Function
The LFR model aims to minimize the following objective function:

Where Ax, Ay and Az are hyperparameters governing the trade-offs.

Fairness Term Reconstruction Term Accuracy 
Term



LFR Objective Function: Fairness
Loss function to ensure the group fairness:

Where:

Meaning: Each class should contain roughly a same ratio from the protected and 
unprotected group



LFR Objective Function: Reconstruction
Loss function for the reconstruction term:

Where:

Meaning: The learned representation of the data should resemble the actual
data and contain as much information as possible.



LFR Objective Function: Accuracy
Loss function to ensure accuracy:

Where:

Meaning: The learned representation should still predict labels with high 
accuracy



LFR Distance Metric
To allow different input features to have different levels of impact, they introduce 
individual weight parameters for each feature dimension, αi, which act as inverse 
precision values in the distance function:

More flexible than Euclidean distance



Experiments

Results on test sets for the three datasets 
(German, Adult, and Health), for two different 
model selection criteria: minimizing 
discrimination and maximizing the difference 
between accuracy and discrimination.
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Experiments (cont.)

● Individual fairness: Comparing consistency of 
each model’s classification decisions, based 
on the yNN measure.

● Accuracy of predicting the sensitive variable 
for the different datasets.

○ Raw: predictions using the input by removing s
○ Proto: predictions using the LFR



Limitations and Future Work
● They didn’t evaluate their approach in high-dimensional datasets (e.g.

images) and for more than two protected subgroups.
● This approach mostly considers group fairness or statistical parity. It is

worth trying to apply other notions of fairness.
● It would be interesting to investigate the tradeoffs between fairness

and accuracy more thoroughly.
● It would be interesting to investigate the relation of fairness and privacy.

Do we achieve some levels of privacy by using these fair representations?



Equality of Opportunity in 
Supervised Learning

Moritz Hardt, 
Eric Price, 

Nathan Srebro
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Motivation
- Ineffective
- not fair!
- lower utility

Equalized Odds
(EOD)

Equalized 
Opportunity

(EOP)

How to Derive?
- EOD
- EOP
- Visualization

Case Study
- FICO Score

Limitations 
& Conclusion

- Unidentifiability
- Assumptions
- Limited evaluation
- Interpretability?

Outline

Notion of Fairness



Motivation
Question: What does it mean for Y to be fair?

Existing notions:

● Fairness through unawareness:
○ Ineffective due to redundant encodings

● Demographic parity
○ Doesn’t ensure fairness
○ Decrease utility ⇒ cannot achieve perfect accuracy!

~ Solution: establish a new notion of fairness in supervised learning



New Notion of Fairness: Equality

Goal & Requirement align accuracy & fairness!

● Measure of discrimination
● High utility allows perfect accuracy of Ŷ = Y
● Better incentive

Proposed Notion

● Predict a true outcome Y from features X based on labeled training data
● Does not discriminate with respect to a specified protected attribute A
● Oblivious: based only on the joint distribution of (Y, Ŷ, A)

~ Equalized Odds and Equalized Opportunity



Equalized Odds (EOD)

Features:

- Equalize TP and FP rates
- Align fairness with accuracy

- Allow Ŷ = Y as a solution
- Enforce accuracy in all classes (not only the majority)

Predictor Ŷ satisfies EOD with respect to protected attribute A and 
outcome Y, if Ŷ and A are independent conditional on Y



Equalized Odds (EOD)

Compared to Demographic Parity:

- EOD allows Ŷ to depend on A but only through the target variable Y
- Encourage the use of features that allow to directly predict Y
- Prohibit abusing A as a proxy for Y

Predictor Ŷ satisfies EOD with respect to protected attribute A and outcome
Y, if Ŷ and A are independent conditional on Y



Equalized Odds (EOD)

Example: job hiring, A = gender; 2 female (1 qualified) + 3 male (1 qualified)

● Demographic Parity: female hiring rate % = male hiring rate %
● EOD: qualified female hiring rate % = qualified male hiring rate % 

unqualified female hiring rate % = unqualified male hiring rate %

~ EOD can be fair while being perfectly accurate!

Predictor Ŷ satisfies EOD with respect to protected attribute A and outcome
Y, if Ŷ and A are independent conditional on Y



Equalized Opportunity (EOP)

EOP vs. EOD:

- weaker constraint
- but allows stronger utility

Predictor Ŷ satisfies EOP with respect to protected attribute A and outcome
Y when Y=1, if Ŷ and A are independent conditional on Y

Y = y Y = y



Equalized Opportunity (EOP)

Hiring Example:

● Demographic Parity: female hiring rate % = male hiring rate %
● EOD: qualified female hiring rate % = qualified male hiring rate %

unqualified female hiring rate % = unqualified male hiring rate %
EOP

Predictor Ŷ satisfies EOP with respect to protected attribute A and outcome
Y when Y=1, if Ŷ and A are independent conditional on Y

~ hired people regardless their gender should have 

been offered with the same opportunity!



Finding EOD/EOP Predictor Ŷ
● Goal:

○ Find a non-discriminating predictor Ỹ derived from a (possibly discriminatory)
learned model

● Based on the existing training pipeline of the problem, models can be:
○ Binary predictor Ŷ
○ Score R

● Post-learning process:
○ Do not require changes in training process

● Oblivious

How?

~ 1) minimizing the loss function 2) given some constraints



Predictor Ŷ Constraints (Binary)
A predictor Ŷ satisfies:

1. EOD, if and only if γ0(Ŷ) = γ1(Ŷ)
2. EOP, if and only if γ0(Ŷ)2 = γ1(Ŷ)2

~ But! Trivial if without Loss 
Minimization

Find the best (fair) predictor with a minimal cost ~ accuracy and 
fairness!



Visual Representation: EOD

want: γ0(Ŷ) = γ1(Ŷ)

Figure: Finding the optimal equalized odds predictor

Intersections:

- To satisfy the EOD 
constraint: intersect

Non-trivial Intersection:

- Also minimize loss

~ EOD: result lies below 
all ROC curves

T
P

→

FP →

x and +: min loss results



Visual Representation: EOP

Figure: Finding the optimal equal opportunity predictor (right).

T
P

→

FP →

EOP Constraint:

- Won’t show intersections 
because no restriction on the 
FP-axis

- Only focus on the TP-axis 
(γ0(Ŷ)2 = γ1(Ŷ)2)

- care only about Y=1, so shifting 
along the FP-axis while 
maintaining the same TP rate

0 2
want: γ (Ŷ) = γ (Ŷ)

1 2

Loss Minimization:
56

- Consider both TP and FP
- Non + points are all worse



Visual Representation: EOP

T
P

→

FP →

Example:

Female vs male job hiring
Suppose A=0 is race1, A=1 is race2; 
From the figure we can see that the 
final results of EOD should be:

- Rate of high-scored race1 people 
getting hired = 0.6

- Rate of high-scored race2 people 
getting hired = 0.6

- Rate of low-scored race1 people 
getting hired = 0.3

- Rate of low-scored race2 people 
getting hired = 0.5

want: γ0(Ŷ)2 = γ1(Ŷ)2

If this was EOD, then the low-scored hiring rate should also 
equals!
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Question:
Is this (indicated in red) also a set of answers?

- Can still be considered as EOP
- However, not really an optimal EOP 

because of the Lower TP rate

T
P

 →

FP →



How to Derive (Score Function)

A-conditional ROC Curve: (Continuous & smooth)

, where t is the threshold value



How to Derive (Score Function)

A-conditional ROC Curve: (Continuous & smooth)

, where t is the threshold value

Equalized Odds:

- if the ROC curves for all values of A agree → Intersection of ROC curves
- May choose different t for different a
- Feasible set of F/TP rates of possible EOD predictors: intersected areas
- Pointwise min of all A-conditional ROC curves

incentivize good utility in all classes



How to Derive (Score Function)
Equalized Opportunity:

- Points on the curves with only same TP in 
both group

- No randomization
- Optimal solution: 2 deterministic thresholds 

one for each group

Solving the optimization problems:

Both EOD and EOP can be efficiently optimized 
numerically using ternary search



Bayes Optimal Predictors

• Goal: construct a nearly optimal non-discriminating classifier

- A Bayes optimal regressor -(derived threshold)> Bayes optimal EOD predictor
- Quantify the loss of:

an EOD predictor derived based on a regressor (nearly Bayes-optimal) In terms 

of the  conditional Kolmogorov distance 

Y is nearly optimal if R is nearly optimal

Same for EOP



Indistinguishable Scenarios

R* = X1 + X2 = A + X2

R̃ = X2

 R* = R̃ + A  R* = R̃ + A

R* = X3

R̃ = X3 - A

Indistinguishable!

R*: Optimal score (accuracy)
R̃: EOD score (fairness)

race

language spoken at home

annual income

Qualification score (loan)

Credit score

race

Qualification score (loan)



Indistinguishable Scenarios

R* = X1 + X2 = A + X2

R̃ = X2

 R* = R̃ + A  R* = R̃ + A

R* = X3

R̃ = X3 - A

Shift the burden of uncertainty from the protected class to the decision maker

R*: Optimal score 
(accuracy)
R̃: EOD score (fairness)



Case Study: FICO Scores

Scenario: a lender wants to provide loans for people who are able to pay back

R = credit risk [300, 850] 
Threshold t = 620



Case Study: FICO Scores
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Case Study: FICO Scores
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Limitations and Future Work
● Assumption on the data

○ Reliable “labeled data”
○ A and Y reasonably well balanced

● Evaluation only on binary classifiers, what about more complex models?
● Might not be a “good predictor” anymore after the post-processing
● Further support needed to verify the proposed notion of fairness: 

Interpretability?

→ to what extent biases may be learned by the model?
→ is the model interpretable enough to identify bias?

● Is it easy to find the unbiased true Y?

Revisiting the question: What does it mean to be “fair”?


