
1

Trustworthy AI
Spring 2024

Yuan Tian
#3: Adversarial Machine Learning and Defenses-

continued

Two steps:

Step 1: Define an objective function 𝒕 such that:

if 𝒕 then

Step 2: Solve the following optimization problem:

Recall: Our Optimization Problem

𝒕

find
minimize
such that 𝒏

Hard Box Constraint

find
minimize
such that

𝒕

𝒏

Dealing with Constraints

Projected gradient descent (PGD)
“Fit” all coordinates to be within the box

LBFGS-B optimizer:
Used by Carlini & Wagner

pass each
𝒊 𝒊 𝒊

separately to the optimizer.

“-B” stands for box constraints

Given 𝒙 is constant, this is the same as enforcing 𝜼𝒊∈ [−𝒙𝒊, 1 − 𝒙𝒊] for every

𝜼𝒊 . We can then use either of these two methods:

1 𝑛 1 1 𝑛 𝑛

𝑖 𝒊

−𝒙𝒊

𝜼𝒊,

1 − 𝒙𝒊,

if 𝜼𝒊 < −𝒙𝒊

if 𝜼𝒊 ∈ [−𝒙𝒊, 1 − 𝒙𝒊]

if 𝜼𝒊 > 1 − 𝒙𝒊

Note: if we also want ∞ then we can also add the box constraints
𝒊

Target label

What we see is that on the
MNIST (digit recognition)
data set it is not difficult to
get a realistic looking
image that fools the neural
network classifier…

In
iti

al
la

be
l

With this approach we get

• So far, we looked at FGSM as well as an attack to minimize the
distance to the original input (e.g., image, audio)

• Now, we illustrate another attack, a variant of FGSM applied
iteratively with projection.

• The attack uses Projected Gradient Descent (PGD) and is
referred to as a PGD attack.

• This is a commonly used attack for adversarial training:
training the network to be robust.

Another attack…often used during training

Given a dataset of points (x, y) where label is:

0 if x2+y2<16

1 otherwise

train a neural network to classify the points correctly

Illustrating the PGD attack

Illustrating the PGD attack

0
0
0
0
0
0
0
0

1

1

1

1

1

1

After training we get the classifier:

Dark blue – neural network
predicts 1 (property does not
hold)

Light blue – neural network
predicts 0 (property holds)

Red dots – those where property
actually holds

White dots – those where
property actually does not hold

Goal:

Find adversarial input in

Linf ball around:

xorig = (-2.2, -2.2)
(red point)

with ε=0.4

Lets pick a point…

Initialize PGD with:

x = (-1.8, -2.6)

Note: this is just for the
example to illustrate
projection. In practice, one
picks a point at random in
the box

Lets Zoom in a bit…

x

xorig

NN(x) = [0.5973, 0.4027]

Loss(x) = 0.5153

x Loss(x) = [-0.852, -1.373]

Up-to-here, its just standard
untargeted FGSM attack but with
smaller step-size of 0.1 than ε
which is 0.4.

But now we also project:

x’’ = project(x’, xorig, ε)
= [-1.9, -2.6] (purple point)

x

x’

x’’

PGD Iteration 1

Change Δ

x’ = x + 0.1 * sign(x Loss(x))
= [-1.9, -2.7] (yellow point)

xorig

x’’ from before now named x:

NN(x) = [0.5455, 0.4545]
(so point x = (-1.9, -2.6) is
not yet a counter example

Loss(x) = 0.6060

x Loss(x) =[-0.9621, -1.5493]

x’ = x + 0.1 * sign(x Loss(x))
= [-2, -2.7]

x’’ = project(x’ ,xorig, ε)
= [-2, -2.6]

x

x’

x’’

PGD Iteration 2

Change Δ

xorig

NN(x) = [0.4927, 0.5073]

found adversarial example
x = [-2, -2.6]

Neural network predicts 1,
although (-2)2 + (-2.6)2 < 16
so it should have been
classified as 0x

PGD Iteration 3

xorig

• The goal of the PGD attack is to find a point in the region which
maximizes the loss (it may still classify to the same label as xorig)

• For our example, we started at the corner. Typically one starts the
search with a random point inside the box.

• One stops PGD after a pre-defined number of iterations (e.g., 10).

• In our example, we always stepped outside the box to illustrate
projection, and then projected to the box. It is possible to never step
outside the box and thus projection will have no effect.

• It is possible the final produced example is inside the box, and not on
the boundary. However, when we project, if outside the box, we will
end up on the boundary.

• In this example, loss is likely to be highest somewhere around the big
orange point (typically far from the decision boundary). Of course,
when we are searching, we don’t know the actual decision
boundary.

• One can implement PGD in two ways:
• a) by projecting current point x’ to the ε-box around xorig as

well as [0,1] for each dimension, or
• b) by projecting the change Δ to [-ε, +ε] as well as to the

constraints needed so each element in the resulting point is
between [0,1] (see slide 3 in this lecture)

• Step size (in our example 0.1) is typically smaller than ε (in FGSM it is
ε).

Some notes on PGD

• Projection is linear-time in the dimension for
𝐿∞ and 𝐿2 norms.

• An open problem: finding efficient projections
for various convex regions that are more
expressive than boxes (e.g., convex polyhedral
restrictions).

xorig

What are the key differences of these
attacks?

Summary of adversarial attacks

Produced example will
be on boundary of
region.

Take exactly one ε-sized stepChange 𝜼 fixed to [-ε, +ε].FGSM
(targeted, untargeted)

Result will be inside
region. Tries to maximize
loss.

Take many steps. Uses
projection to stay inside region.
For special case of 𝑙∞ , step size
smaller than ε.

Can be instantiated with any
region one can project to.

PGD
(typically untargeted,
but can be targeted)

Result will be inside
[0,1], with a hopefully
small 𝑙∞ distance from
original image.

Aims to produce a change 𝜼
with small 𝑙∞. Takes many steps,
using LBFGS-B to ensure 𝜼 stays
in bounds.

No real restriction, except
image has to be in [0,1] (like all
other methods). This restricts
the region for the change 𝜼: 𝜼
has to be bounded s.t. original
image + 𝜼 stays in [0,1].

C&W [Images]
(presented as
targeted)

Can we Avoid Adversarial Examples?

Many works have tried to, but follow-up works showed that all fail

The main successful defenses in practice now incorporate

adversarial examples during training

Some pretty good experimental defenses exist

Adversarial Accuracy vs. Test Accuracy
Adversarial accuracy refers to a metric on the test set where for each
data point we check if the network classifies the point correctly and the
network is robust in a region around that point.

Example [∞ ball]: Let =0.3 , and let the test set contain 100
examples. For each example i , lets check if in the ∞ region of size

around i, we find an (adversarial) example with a different
classification than i For that purpose we typically use a PGD attack.
Now suppose, 95 of the 100 examples classify correctly and for 15 of
these 95, we find an adversarial example. Then, our adversarial
accuracy will be 8# and our test accuracy will be %&

$## $##

Adversarial accuracy and Test accuracy can be at odds: it is possible to
raise the adversarial accuracy which tends to lower test accuracy. This
trade off is being actively investigated.

Defending against adversarial examples

• General philosophy for security solutions
• Prevention
• Detection
• Response

• Prevention
• robust classifiers

• Detection
• detecting adversarial examples

• Response
• manual labeling?
• collecting more data?
• Gradient masking?

Detecting adversarial examples

• Binary classification
• Normal example vs. adversarial example

• Add one more label “adversarial”
• E.g., 0, 1, 2, …, 9, adversarial

• Extracting features and building detectors

Challenges of detecting adversarial examples

Detector

Classifier

x’’ x’

Adversarial

Incorrect label

Normal

Attackers are adaptive

Response

• Manual labeling

• Collecting more data
• Other sensor data

• Gradient masking

Gradient Masking

23

Many trivial ways to hid the gradient.

• Changing the model to return most likely class and not the probability.

• infinitesimal changes in the input will not change the output at all.

But are we making our model more robust?

24

We are just giving the adversary fewer clues to
figure out the holes in the model.

Limitation:

25

• The defender might increase the attacker’s cost by training models with higher input

dimensionality or modeling complexity leading to increased number of queries to train the

substitute.

Prevention – robust classifiers

• Empirically robust classifier
• A particular attack cannot find adversarial example within a L_p norm ball
• -robust against an attack for x, if the attack does not find adversarial

perturbation whose L_p norm is no larger than .

• Certifiably robust classifier
• No adversarial examples exist within a L_p norm ball.
• -certifiably robust for x, if no adversarial perturbation whose L_p norm

is no larger than exists.

Defense as Optimization Problem

find
minimize

where x, y ~𝐷

!

Inner
maximization

problem

Outer
minimization

problem

find 𝒙′ that achieves
high loss

D is the underlying distribution

is typically estimated with the empirical risk
x, y ~𝐷

denotes the perturbation region around point , that is, we want all points
in to classify the same as x . We can pick to be:

find 𝜽 that minimizes
the high loss, aiming to train
a robust classifier

Madry et.al, 2017

PGD Defense in Practice

- $

|𝐵𝑚𝑎𝑥| 𝑥𝑚 𝑎 ,𝑦 ∈𝐵𝑚 𝑎 𝑚𝑎𝑥

Step 1: select a mini-batch of examples from dataset D.

Step 2: compute 𝑚𝑎𝑥 by applying PGD attack (actually computes an approximation)
as follows to every point :

Step 3: solve outer problem:

Step 4: goto
epochs.

Step 1. Various stopping criteria, including reaching a certain number of

*The conversion of the original min-max problem to the 4 steps above is based on Danskin’s theorem

𝑚𝑎𝑥
Note: 𝑥𝑚𝑎𝑥 need not be adversarial
example; it just aims to maximize 𝐿

Why do we think we can find a good approximate
solution to the inner maximization problem?

Experiments show that many local maxima inside have well-
concentrated loss values. This is inline with why we believe neural network
training is possible (many local minima with similar values).

This graph is for a single example: goal is to
maximize the cross-entropy loss measured for
100,000 random starting points in .

The red graph indicates the value of the loss for
an adversarially trained network.

The blue graph is for the loss of a non-
adversarially trained network.

Points to Consider when Defending

Model capacity matters: larger networks are more defendable and less easy
to be attacked with transferrable examples. Training smaller nets with PGD has
negative effects on accuracy.

Training with adversarial examples from PGD attacks (many steps and
project) tends to perform better than training with adversarial examples from
FGSM attacks (one step, no projection).

Even on larger networks, defenses can negatively affect accuracy (e.g. CIFAR).
More research is needed here. By this we mean that after the network is
trained, we test its accuracy on the test set. And there, it is more robust yet
more points classify incorrectly.

“No free lunch in adversarial robustness”, Tsipras et. al. 2018
Proves that if we want robust model, decrease in standard accuracy is inevitable!

“Adversarially Robust Generalization Requires More Data “, Schmidt et. al. 2018
Provides lower bound on number of samples needed to achieve adversarial robustness

“Theoretically Principled Trade-off between Robustness and Accuracy”, Zhang et.al, 2019
Improves slightly on the PGD defense; also combines with standard (e.g., cross-entropy) loss.

Issues of adversarial training

• No certifiable guarantee

• May not be empirically robust against unseen attacks
• Use multiple attacks during training

• May not be robust to perturbation larger than used in training

The fundamental problem

The attacks and defenses so far are similar to testing: they may work well in

practice sometimes, but provide no formal guarantees.

Automated verifier to prove properties of realistic networks

Useful in:

• Certifying large cyber-physical systems that use NN

• Proving robustness of NN

• Learning interpretable specs of the NN

• Comparing NNs

Lecture on 04/22 will provide more discussions on this
topic

More generally we want

Lecture Summary

• We looked at a way to (experimentally) defend
the network by training with adversarial
examples, specifically the PGD defense. This
results in a min-max nested optimization
problem.

• Adversarial training can lower standard accuracy.
Remains a question of research interest, how to
avoid this from happening.

Lecture Summary

Deep Learning is susceptible to
adversarial examples

Generating Adversarial examples
(an optimization problem)

• FGSM
• C&W (minimize perturbation)
• PGD

An example of the PGD attack • We looked at a way to (experimentally)
defend the network by training with
adversarial examples, specifically the PGD
defense. This results in a min-max nested
optimization problem.

