Module 17 ECE M216A

Packaging

Prof. Dejan Marković

ee216a@gmail.com

Package Functions

- 2 Mechanical connection of chip to board
- () Electrical connection of signals and power
 - Short wires with low R and L
- 3 Removes heat produced on chip
 - Protects chip from mechanical damage

[Reading: Weste, Harris VLSI book]

Main Issues

Cost

• Thermal impedance: how effectively package removes heat from the die

- Lead inductance
 - Ceramic pin grid array package lowest
 - Cheap epoxy plastic highest

Basic Package Types

- **PLCC:** plastic leadless chip carrier
- TSOP: thin small outline package
- **QFP:** quad flat pack

- **DIP:** dual inline package
- **PGA:** pin grid array
- **BGA:** ball grid array

[Weste, Harris VLSI book, Fig. 12.1]

Purpose-Driven Packaging (Same Chipset)

 Packages: PGA (left), SMT (middle) and CoB (right) for different needs / use cases

Advanced Packaging

Thin-chip

- Chip thinned to 25μm
- Flexible ultra-thin package
- Embedded in flex PCB

Example: Xilinx Virtex 7 Package

- Controlled collapse chip connection (C4) bumps
- Through-silicon vias (TSVs)

Si Skyscraper

 3M and IBM (2011)

• 3M glue

• Up to 100 chips

Goal: bond wafers

http://youtu.be/rbj5vrXuID0

Photo: IBM

Example Chip(let) Assemblies

Courtesy of DMGroup

24.5mm² (40nm)

۱۹۶۱۹) ۱۹6

Concept of a Typical Chip Package

Chip-to-Package Connections

• Traditionally, chip is surrounded by pad frame

- Metal pads on 50 100 μm pitch
- Gold bond wires attach pads to package
- Lead frame distributes signals in package
- Metal heat spreader helps with cooling

Chip / Package Alignment

Alight top-left corners and do simple bonding

Top Left (chip)

Chip

Top Left (index marker)

Package

Example Package Data Sheet

www.spectrum-semi.com

Know Pin Locations (PCB Routing)

- 120 pins
 - chip: 3.5mm²

Ceramic PGA

- SSM P/NCPG12028(~ \$30)
- Test socket
 - YAMAICHI NP89-19601-KS11730(~ \$70)

Advanced Packages

- Bond wires contribute parasitic inductance
- Fancy packages have many signal, power layers
 - Like tiny printed circuit boards
- Flip-chip places connections across surface of die rather than around periphery
 - Top-level metal pads covered with solder balls
 - Chip flips upside down
 - Carefully aligned to package (done blind!)
 - Heated to melt balls
 - Also called C4

Package Parasitics

- Use many V_{DD}, Gnd in parallel
 - Inductance, I_{DD}

Heat Dissipation: Comparison

- 60 W
- Surface area ~120 cm² (too hot to touch)
- 130 W
- Die area ~4 cm²
 (60x higher power density)

Heat Dissipation

- The heat flows from the transistor junctions through the substrate and package
 - Can be spread across a heat sink,
 - Then carried away through the air by convection
 - Liquid cooling used in extreme cases (\$\$\$)

Analogy:

- Current flow: $\Delta V / R$
- Heat flow: ΔT / R_{thermal}

Thermal Resistance

- $\Delta T = \Theta_{ja} \cdot P$
 - ΔT: temperature rise on chip
 - thermal R of chip junction to ambient
 - P: power dissipation on chip
- Thermal resistances combine like resistors
 - Series and parallel
- $\Theta_{ja} = \Theta_{jp} + \Theta_{pa}$
 - Series combination

Thermal Impedance

- Ceramic pin-grid arrays 15 to 30 °C/Watt
- Plastic Quad Flat Packs 40 to 50 °C/Watt
- Heat dissipation:
 - Finned heat sinks
 - Embedded metal slugs
- High-cost packages:
 - Forced air or liquid cooling through package ducts
 - Example: IBM Thermal Conduction Module

Example 17.1: Thermal Resistance & Power

- Your chip has a heat sink with a thermal resistance to the package of 4.0° C/W
 The resistance from chip to package is 1° C/W of the sistance from the package is 1° C/W of the package is 1° C/W
- The system box ambient temp. may reach 55° C

 The chip temperature must not exceed 100° C

- What is the maximum chip power dissipation?
 - $\Theta_{ia} = \Theta_{ip} + \Theta_{pa} = 1 + 4 = 5^{\circ} \text{ C/W}$
 - $\Delta T = 100 55 = 45^{\circ} C$
 - $P = \Delta T / \Theta_{ia} = 45/5 = 9 W$

Power Distribution Network Functions

- Carry current from pads to transistors on chip
- Maintain <u>stable voltage</u> with low noise
- Provide average and peak power demands
- Provide current return paths for signals
- Avoid electromigration & self-heating wearout
- Consume little chip area and wire
- Easy to lay out

Power Supply Drop/Noise

Supply noise is variations in power supply that manifest as noise onto the logic gates

- Power supply wiring resistance creates voltage variations with current surges
- The current surge for static CMOS depend on dynamic behavior of circuit

Tackling the V_{DD} Drop

- 1 V_{DD}-Gnd capacitance
 - Based on total max C_{switched} (10x)

 Toprovides I peak
- Predesign power/ground network to reduce resistance
 - Based on max I_{DD} required by each block
- Adjust activity to another clock cycle to reduce peak current
 - Scheduling

Power Requirements

- $V_{DD} = V_{DDnominal} V_{droop}$
- Want $V_{droop} < \pm 10\%$ of V_{DD}
- I_{DD} changes on many time scales

- Sources of V_{droop}
 - IR drops
 - L di/dt noise

Issue #1: RI Introduced Noise

Example 17.2: Power IR Drop

- Drive a 32-bit bus, total load of each wire: 2pF, R = 0.125Ω /square, want delay ~0.5ns, < 6% drop
 - R for each transistor needs to be $< 0.25 \text{ k}\Omega = R$ • To meet RC = 0.5 ns \mathcal{D}
 - Effective R of bits together is $250/32 = 7.5 \Omega = R_{load}$
 - For < 6% drop, Power R must be $< 0.48 \Omega$
 - That is only 4 squares

Must Support Total Power

- Chips today dissipate 5-50W
- Implies total current is 5-50A (Power = IV)
 - Supply is now ~1V!
- Very big problem currently
- Use many supply pins (@ few mA each),
 and wide wires for low R
- Grids of high-level metal for power is a must!
 - Thicker metal... lower R

Resistance and Power Distribution Problem

Before

After

- Requires fast and accurate peak current prediction
- Heavily influenced by packaging technology

Source: Cadence

Issue #2: L di/dt

Impact of inductance on supply:

- Change in current induces the change in voltage
- Longer supply lines have larger L

Example 17.3: L di/dt Calculation

- (12.3.3 W&H) A 1GHz chip transitions from idle (20 A) to full power (60 A) operation in a single cycle
- If the power supply has 20 pH of series inductance, estimate the power supply noise caused by this transition

Solution:

- $\Delta I/\Delta t = (60A 20A)/1$ ns = 40 GA/s
- The inductive noise is: $L \Delta I/\Delta t = 0.8 \text{ V}$
 - Unacceptable in a low-voltage process
 - The chip needs internal bypass capacitance

Design Techniques to Address L di/dt

- Separate power pins for I/O pads and chip core
- Multiple power and ground pins
- Position of power and ground pins on package
- Increase t_r and t_f
- Advanced packaging technologies
- Decoupling capacitances on chip and on board

Bypass Capacitors

- Need low supply impedance at all frequencies
- Ideal caps have impedance decreasing with ω
- Real caps have parasitic R and L
 - Leads to resonant frequency of capacitor

Use Multiple Capacitors in Parallel

- Choose caps to get low Z at all frequencies
- Large C near regulator: low Z at low frequencies
 - But also has a low self-resonant frequency
- Small capacitors near chip and on chip have low impedance at high frequencies

Decoupling Capacitors

Decoupling capacitors are added:

- On the board (right under the supply pins)
- On the chip (under the supply straps, near large buffers)

On-chip Decoupling Capacitance

- Static CMOS logic dynamically switches (no dc current)
 - Supply just needs to provide the average current
 - Peak current needs to come from nearby capacitance

- Basically the same as charge sharing
 - Use C_{decoup} > 10 C_{switched} to guarantee < 10% V_{DD} drop
 - Put capacitance near load with little resistance
 - Part of the PnR tool

Bypass Capacitances in Real Life

Package bypass

PCB bypass

1 F

100 nF decap FPGA chip Image courtesy of M. Horowitz & K. Mai

Power Distribution Network

Courtesy: M. Horowitz

AC/DC converter

- Usually 110 VAC to 12 or 5 VDC in PCs
- Voltage Regulator Module
 - Converts one DC level to another (5V to 1V)
- Printed Circuit Board
 - Planes send current from VRM to the package
 - Planes have caps for bypass; use discretes too

Package

- Deliver current to the chip using balls or bonds
- Can use bypass caps on the package as well

Chip power grid

Use device bypass capacitors

Power System: Lumped Model

- Power comes from regulator on system board
 - Board and package add parasitic R and L
 - Bypass capacitors help stabilize supply voltage
 - But capacitors also have parasitic R and L
- Simulate system for time and frequency responses

On-chip Power Network: Distributed Model

Power Distribution Strategy

- Low-level distribution is in Metal 1
- Power has to be "strapped" in higher layers of metal
- The spacing is set by IR drop, electromigration, inductive effects
- Always use multiple contacts on straps

Power and Ground Distribution

• Finger-shaped network

Multiple supply pins

Power and Ground Need Wider Wires

Power needs to be distributed to all the cells in the circuit

- A tree
 - Trunk of the tree must supply current to all branches
- R in these lines must be very small, since when a gate switches, its current flows through the supply lines
 - If R of the supply lines is too large, the voltage supplied to gates will drop, which can cause the gate to malfunction
 - Usually you don't want the supply to change more than 5-10% due to supply resistance

Power Must be on the Metal Layer

Is that enough?

Usually, they have to be wider too

- R_{trans} is much greater (by 10⁵) than R_{metal}
- But one builds wide devices, and long wires
- And in a chip there are many devices connected in parallel to the supplies
 - So you need still need to be careful even with metal layers, and make the special wires wide enough

3-Metal Layer Approach (EV4)

- Power supplied from two sides in M3
- M2 used to form power grid
- 90% of M3 used for power/clk routing

4-Metal Layers Approach (EV5)

- Power supplied from four sides
- Grid strapping done all in coarse metal
- 90% of M3/M4 for power/clk routing

6 Metal Layer Approach (EV6)

- Two reference-plane metal layers
- Significantly lowers resistance of grid
- Lowers on-chip inductance

Decoupling Capacitor Ratios

Processor	EV4	EV5	EV6
Technology	0.75μm	0.5µm	0.35μm
Year	1992	1995	1998
Clock rate	Clock rate 200 MHz		600 MHz
C _{switched}	12.5 nF	13.9 nF	34 nF
C _{decoupling}	128 nF	160 nF	320 nF

Decoupling/switching capacitance ~ 10x

EV6 De-coupling Capacitance: Example

Design for
$$\Delta I_{DD} = 25 \text{ A} @ V_{DD} = 2.2 \text{ V}, f = 600 \text{ MHz}$$

- 0.32-μF of on-chip de-coupling capacitance
 - Under major busses and around major gridded clock drivers
 - Occupies 15-20% of die area
- 1-μF 2-cm² Wirebond Attached Chip Capacitor (WACC) significantly increases "Near-Chip" de-coupling
 - 160 Vdd/Vss bondwire pairs on the WACC to minimize inductance

Electromigration: Limits DC Current

17.50

Electromigration: Need Multiple Contacts

Power and Clock Lines: Sizing

- Check for metal migration at worst power corner
- Do the following checks:

Process (np)	Temp	Voltage	Tests
FF	Low	High (min)	Power (DC), clock races, hold time
SS	High	Low (min)	Circuit speed, setup time
SF	Low	High (min)	Pseudo-nMOS noise margin, level shifters, memory write/read, ratioed circuits
FS	High	High (min)	Memories, ratioed circuits, level shifters

Power Supply Rules

- The exact rules depend on the technology
 - Rules for resistance and electromigration
- Example rules
 - Ct for each 16λ of transistor width (more is better)
 - Wire must have less than 1mA/μm of width
 - Power/Gnd width = L_{wire} * Sum (all transistors connected to wire) / 3*10⁶λ (very approximate)
- For small designs, supply design is less of an issue
 - Total power is small
 - Chip is small, so wires are short
 - Will not be an issue in this class

Working with Scaled V_{DD}

Additional power/gnd pads, level shifter

Simple On-chip Level Converter

Example: $V_{DDL} = 0.4V \mid 90$ nm

Layout (Separate N-wells)

PR boundary: $7\mu m \times 3.9\mu m$ (std height)

Post-layout Simulation Results

VddL	tp:0-1	tp:1-0	tp:avg	tp:avg	Post-layout
(V)	(ps)	(ps)	(ps)	(ps)	RC extraction
0.4	1725	1750	1738	1889	
0.5	435	880	658	792	
0.6	214	754	484	573	
0.7	145	717	431	501	
0.8	115	701	408	470	
0.9	98	695	396	452	
1.0	86	693	389	442	

Note: final implementation may have additional buffers at the output to increase drive strength before the pads

• I/O pads: see W&H, 12.4.1-3