ECE115C – Digital Electronic Circuits

Lecture 3: MOS RC Model, CMOS Manufacturing

Lecture 2 Summary: MOS I-V Model

$$\mathbf{v}_{GT} = \mathbf{v}_{GS} \quad \mathbf{v}_{T}$$

$$\mathbf{G}$$

V - V - V

- MOS Transistor:
 RC Model (pp. 104-113)
- CMOS Manufacturing Process (pp. 36-46)

Switch Model of CMOS Transistor

Switching Behavior

The Transistor as a Switch

MOS can be treated as equivalent resistance

Calculating MOS resistance: $R(V_{DS}) = \frac{V_{DS}}{I_{DSAT} \cdot (1 + \lambda V_{DS})}$

This model will be used for delay analysis

ECE115C

Computing Equivalent Resistance (1/2)

$$R_{on} = \frac{1}{-V_{DD}/2} \int_{V_{DD}}^{V_{DD}/2} \frac{V}{I_{DSAT} \cdot (1+\lambda V)} dV... \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{7}{9} \lambda V_{DD}\right)$$

$$\uparrow$$

$$k' \frac{W}{L} \left[(V_{DD} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right]$$

$$V_{GS}$$

$$R_{on} \approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \left(1 - \frac{7}{9} \lambda V_{DD} \right)$$

Computing Equivalent Resistance (2/2)

Method 2: simple averaging

– The averaging works because of approximately linear dependence of I_{DS} on V_{DS} (recall the CLM model)

R_{on} vs. V_{DD} (Simulation Result)

R_{on} increases rapidly as V_{DD} approaches V_T

MOS Capacitances

The Gate Capacitance

Vout

Capacitance Components

- #1: Gate-Channel Capacitance
 #2: Gate Overlap Capacitance
- #3: Junction/Diffusion Capacitance $\begin{cases} s/s \\ c_s \end{cases}$

#1: Gate-Channel Capacitance (GC = CGCB + CGCS + CGCP

	Operation Region	Cgb	C _{gs}	C_{gd}
_	-> Cutoff	C _{ox} WL _{eff}	0	0
	Triode	0	$C_{ox}WL_{eff}/2$	$C_{ox}WL_{eff}/2$
_	-> Saturation	0	$(2/3)C_{ox}WL_{eff}$	0 🗸

Most important regions in digital design: saturation and cut-off

A Close Look at Gate-Channel Capacitance 189

Summary: #1: Gate-Channel Capacitance

C_{GCD} C_{GCS} C_{GCB} **Operation Region** Cutoff C_{ox}WL_{eff} 0 n $C_{ox}WL_{eff}/2$ $C_{ox}WL_{eff}/2$ Triode 0 $(2/3)C_{ox}WL_{eff}$ Saturation 0 0 Textbook: page 109 Off/Lin $\rightarrow C_{gate} = C_{ox} \cdot \underbrace{W} \cdot L_{eff}$ Sat $\rightarrow C_{gate} = (2/3) \cdot C_{ox} \cdot \underbrace{W} \cdot L_{eff}$ $\downarrow Leff = 0.09\mu$ $\downarrow Leff = 0.24\mu$ $\downarrow Leff = 0.24\mu$ $\downarrow Leff = 0.24\mu$ $\downarrow Leff = 0.24\mu$ $\downarrow Leff = 0.24\mu$ UCLA **ECE115C**

#2: Gate Overlap Capacitance

Measuring the Gate Cap

Finding Equivalent Capacitance – Delay

- Curve fitting approach to find a number that works for hand analysis of the gate delay
- Understand the limitations: the model will depend on signal rise times, voltage, temperature, process parameter variation

- Experiment: find C_{gate} to match propagation delays
 - $t_{p1} = t_{p2} \rightarrow C_{gate}$ is equivalent cap of the green gate

#3: Diffusion Capacitance

#3: Diffusion Capacitance

ECE115C

Junction Capacitance is Bias-dependent (189)

#3 Diffusion Capacitance: Summary of Equations

Linearizing the Junction Cap

 Replace non-linear capacitance by large-signal equivalent linear capacitance, which displaces equal charge over voltage swing of interest

$$C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{high}) - Q_j(V_{low})}{V_{high} - V_{low}} = K_{eq} \cdot C_{j0}$$

$$C_{j0} (k_{ej}) = \frac{-\Phi_0^m}{(V_{high} - V_{low}) \cdot (1 - m)} \left[(\Phi_0 - V_{high})^{(1 - m)} - (\Phi_0 - V_{low})^{(1 - m)} \right]$$

Summary: Capacitive Device Model

Outline

MOS Transistor: RC Model (pp. 104-113)

CMOS Manufacturing
 Process (pp. 36-46)

Photo-Lithographic Process

Patterning of SiO₂

CMOS Process at a Glance

(a) Base material: p+ substrate with p-epi layer

(b) After deposition of gate-oxide and sacrificial nitride (acts as a buffer layer)

(c) After plasma etch of insulating trenches using the inverse of the active area mask

(d) After trench filling, CMP planarization, and removal of sacrificial nitride

(e) After n-well and V_{TP} adjust implants

(g) After polysilicon deposition and etch

 (h) After n+ source/drain and p+ source/drain implants. These steps also dope the polysilicon.

(i) After deposition of SiO₂ insulator and contact hole etch.

(j) After deposition and patterning of first Al layer.

(k) After deposition of SiO₂
 insulator, etching of via's,
 deposition and patterning of
 second layer of Al.

Advanced Metalization

ECE115C

