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Agenda

e Logic designh concepts
= Fast vs. slow inputs
= Transmission gates

e More delay models
= Simulation-based
= Library models

e Optimal gate sizing
= Min delay
= Delay > min delay
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Faster Inputs

ey omipets ko )

e Higher input of a stack is faster n! Jirst #hen o
(in, is faster than in,)

. 7Y
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Mixing Static CMOS & Transmission Gates

e Static CMOS gates drive a TG switch network

e Output of network drives a static CMOS gate
e Example: a 2:1 Mux /t' = JUF”L JGFV

seIAI:[

§%@2@ L

Gtrge |
selA
in Iy
e
b

utl I: Out
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Transmission Gate Delay

e Delay depends on the gate that drives the switch
e Example: path B selected, Out, pulling up

ty =ty +1,

selA selAb

T Out, I: Out
2

o
e B N A
</

inA
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Modeling the Delay

e Focus on the 1%t (compound) stage
(2nd stage is a simple inverter)

Assume:

Inverters

e W,=3um
e Wy=1pm

P:3u

Out, Out Trans. Gates
e W,=2pum

N:1p
Icload ¢ WN = 2 l‘lm
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Capacitance Components

Diffusion: Gate:
Inv+TG Inv

T \ selA selAb
ing [AL3um Yy
} Out, +_C _32 out

W c:LoadT 1

Diffusion:
TG+ TG

inA | >

TG: 2um

N

A My
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Calculate the Capacitances

NEeRYY) [Assumptions:
Inv TG . iﬁ ﬁo\q,) = 1.5 fF/um
( £ (- A e C.=2fF/um
= (3pu+1p)-1.5f + (2p+2p)-1.5f = 12 fF G 3
Load (2 Zu) 1. 5f + (2 Zlvl) -1. 5f + (3|1,+1|J.) Zf 20 fF

-
TG TG Inv

selA I selAb 7K CL@ &C/

C L [ FC 3um
Out |~
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Calculate RC Time Constant t,

e R, =7.5kQ-p/3pu=2.5kQ Assumptions:
* RTGP =7.5 kQ-p / 2 L=3.75 kQ * Ryp =3 kQ-pm
* Ry =6kQ-pu/2pn=3kQ . Nu=@kﬂum
. PU = 7.5 kQ-um
. ﬁvkn -um
k.Sk 3.75k 9 ool
—';I\(/\/j Out,
— AN

—_12f —_ZOf
Inv 1 TG I
_ SdecUfs simert worst cacq

T, = 2.5k-12f + (2.5k+3.75k| | 3k)-20f = 113ps
choolale  worst (982
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Simulation-Based
Delay Model



Simulation-Based Parameter Extraction

e Typical simulation model szwwé Lp oW
= Provides realistic input + load fpﬁﬁ‘”)
/\k/\,\__,__/
/tF: ‘2(71/; Cf oW fC
_ Ori
Previous Gate Next ver ﬂ%
— e e
stage tested stage
nexst
\ ) - ) stopne vy,
et Y U Lootcz} Y
Input - “Output Lor(4

0 120N QWW
éw ad /\*§CW17U74W/0OA\)
choocd on odjustobie
— vowd. o phat9l

“he olal%

3.11



Extracting C__.. by Simulation

gate

t, %t
Curve-fitting: ﬁ ”L"

Po—>o—>o—
Sweep Cyyy, | Y,
untilt,, =1, :D |

*t,=t, 2 C,.isequivalent cap of the green gate

e Limitations: the model depends on signal rise times,
voltage, temperature, process parameter variations
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Extracting C by Simulation

parasitic
buj e
1 ¢ Delay of the unloaded gate f)/t””\ﬁli(?%
= Beware of sighal slopes /
JZoh &}7 %
2 * Another way: find Cparasitic from |mér§ev:tmn—6f— )
delay(fanout) line at fanout =0 wzﬁ Shay

3 e« Play with AS, PS, AD, PD model parameters
= AS=AD =PS=PD =0 [overlap + junction caps]

* Cpte & C,, fort,, and t , are different [WHY?]
= For delay analysis, we use the average value
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Extracting R by Simulation

1 ¢ Use the delay formula to find R

Ste)

2 ¢ Slope of c}elay(fanout) line < fanout-R_-C

- Reff = tp,gate / (069 Cgate)
= Reminder: set AS, AD, PS, PD to 0!
-
ek o1 R0
—Do—Po—o—  t;: delay w/ step input
o t,,: delay w/ realistic slope
. -[>o—-[>o;-[>o—[>o—

gate

e R for transistor stacks could be similarly found
= Make sure you factor in the parasitic cap
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The “Flow”

e Hand design
= Simple RC models provide intuition about circuits
= Tradeoff analysis
= Dominant effects
= Reasonable starting point in the design process
= Run simulations to refine the model

e Simulation (to confirm your intuition)

= If the simulation results are way off, there is a bug
(check schematics, simulation files, your models)

= Don’t forget the corners
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Process Variations

e Not all devices (primarily transistors) are created equal
= Even if they nominally have the same exact drawing
= Two on the same die (wafer, lot) can differ

e Variations cause
transistors to have 4
differentVyand g,
speeding up (F) or
slowing down (S)
the devices
= Doping conc. (u)
= W/L

" Tox
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More Corners (PVT Variation)

Process Voltage Temperature
Fast 180
2 S <— V... reliability, P
E (= 1,55-
o >Q 1.50
145 V,.in: freq.
Slow MO 6 5 1o 12 14 6 s 2o
: Time (ps)
Slow NMOS Fast o Tmax: frequency & power
. i 8
e Typically, given corner parameters 5
for devices Time (usec)
. . 1.5
= Characterize effective parameters P (To>
J— O d —
across corners T
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Process Corners Combined

Fast

PMOS

Slow

FF

~—1Fs

SS

Slow NMOS Fast

Includes:
* Process
e Voltage
e Temp

variations

S:low Vpp, high T (t
F: highV,, low T (t, )

setup)
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Delay and Transition Time

e Gate delay is approximated as RC elements
e The transition time is proportional to the same RC
= Using ideal RC, the 10-90% is roughly 2.2RC

e For a gate (inverter) driving another gate,
= Transition time is roughly 2ty¢ Ay

= Valid only for RC network
e [What would happen in an inductive network?]

e Useful for modeling noise coupling
= Aggressor transition time determines injected noise
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Multi-Stage Gate Delay

e Static CMOS: total delay ='sum of stage delays

Liotal = z L,

r

e The R of the ga

tfegﬁf QF@Q

e The C of the subsequent gate(s)
i %%

Gate 3

Gate 5

out

Gate 4

Gate 2

Gate 6

Load
-

tiotal = tp1(R1,C3,C)) + t3(R3,Cp) + t4(R,,C5,C) + tpS(RS'éL)

3.20



Fan-In and Fan-Out

* Fan-In: the number of inputs ( (o4yic Sb@

= An indication of the input load that the gate presents to
a predecessor gate

* Because the series stack is roughly the number of inputs
» Later we will use Logical Effort to embed this concept

oo Jttpu . 0 V\Qﬁf QJwgﬁ«Wwd (gote @f

e Fan-Out: effectlve 0 load (relative to vy
= An indication of the loading (gate type dependent)

" Useful to normalize the loading to C,,,, of an invcher%%r@
with equal drive strength as the gate "% 377

—
* FO = Cionp/Ciny E\:—E oy -
where C, = Co' (Wp+Wy) and Ry, = Roy yplor. = 4

(S
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Fanout Calculation
NAND gate driving @AND gates
R

°* NAND gate: W,=5, W =5 /r,_@?; 2

/L 5@. qual input Wldth 1061 )p &f\o

e, Total load gate width = 5:10

o~

/o

* Equivalent Inv: W =5, W =2.5 g"LJ“

= Equivalent (in terms of@and@strength)
= Total gate width =7.5 jﬁ;

e Fanout =50/7.5 = 6.6 7IQ )J
VF

~——
L

L&
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Another Metric; FO4 Inverter Dela

e Measures quality of design independent of technology

d 1

Cadence 90nm technology:

FO4 = 33ps Simulate FO4 delay
Ring Osc Stage = 13ps in@mlide 2.34)
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Model Used in Cell Libraries

Propagate two quantities:
e Delay
e Signal slope

Modeled as linear or table lookups
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Gate Delay Estimation

e Depends on transistor sizes, input signal slew, output
capacitive load and PVT conditions

e For each PVT, timing library is provided by vendor

= Delay, output slew, dynamic and static power are
characterized for different input slew and output loads

e Characterization values are stored as 2-D look-up tables
= Qutput delay = f (input slew, output load capacitance)
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Gate Delay Estimation

Gate

Delay %

Output
Capacitance
- o

Interpolation with 4 points

Courtesy: Synopsys
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Design Problem: Interconnect Delay

e Timing assumption during pre-layout synthesis
widely differs from the post-layout reality

e This happens because the interconnect delay
domifiates the overall delay in scaled technologies

e As a result, timing closure becomes a challenge

Courtesy: S
ourtesy: Synopsys .



CAD Problem: Interconnect Delay

e New industry trends = new IC design flows

e The major contributing factors:
= Interconnect delay and area
= The number of metal layers

* Planning requirements %\ f@m /Du’b
ectd

e Need to consider interconn elay early in design

e A few techniques for reducing interconnect delay:
= Chip-level signal planning
= Over-the-Cell routing

Courtesy: Synopsys
y: Synopsy 3.28



Wire Load Models (WLMs)

e In the absence of physical design information DC uses
statistically generated WLMs to estimate wire lengths

= WLMSs provide a fanout vs. length relationship

e Interconnect delay estimation:
= By knowing fanout, estimate the wire lengths

= Next, given unit-length R and C and the estimated
length, estimate R and C to give an estimated delays

e Note: WLMs are area dependent
= Unit-length R and C increase with area

Courtesy: Synopsys
y: Synopsy 295



Example WLM

wire_load('30x30) {

capacitance : 3.0; /* C per unit length */
resistance : 30.0 ; /* R per unit length */
area: 1.5, /* area per unit length */

slope : 1.5; /* extrapolation slope */
fanout_length(1,1) ; /* fanout/length pairs */
fanout_length(2,2.2);

fanout_length(3,3.3);

fanout_length(4,4.4); }

Fanout

5 v
15 Wire length

A, g
RC delay

Model from a library
compiler (LC) source file:

350

300 /

-
o
o

wire length

n
o

o

Courtesy: Synopsys



Hierarchical Wire Load Models

DC supports 3 modes for nets that cross hier. boundaries

Mode = top
40x40
10x10 30x30 20x20
A 7 B
/  MID
\ |/ TOP
\/
40x40
Mode = enclosed Mode = segmented
40x40 40x40
10x10 30x30 20x20 10x10 3030 20x20
A 7 B A 7 v B
/  MID / \ MID
\ | / TOP / \ TOP
\/ / \
30x30 10x10 30x30 20x20

Courtesy: Synopsys
y: Synopsy 221



Speed Optimization
via Gate Sizing



Speed Optimization via Gate Sizing

I:> e Gate sizing basics
= P:N ratio
= Complex gates
= Velocity saturation
= Tapering

e Developing intuition
= Number of stages vs. fanout
= Popular inverter chain example
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Basic Gate Sizing Relationships

e Rise and fall delays are determined by
the pull-up and pull-down “strength”

* Besides the W/L, strength depends on y, V;

= PMOS is weaker because of lower p,
¥
e Larger P network-than N network

e Increasing size of gate can reduce delay
"R, < 1/W
= BUT it can slow down the gate driving it
e Cox W. So be careful!
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P:N Ratio for “Equal” Rise and Fall Delay

* Goodto havet,, =t
= Don’t need to worry about a worst-case sequence
= Size P’s to compensate for mobility h:%ﬁ _ };:ﬁf;

* Coy, V4, L are roughly the same

= 1 1
X — X ——
on I ”W
o Make@
*R/R=T
(Hpr/Han = B/k) Wp ﬂn
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Complex Gate Sizing / g%%/g_m%

. . - . %
o N-stack series devices need:N times lower resistance

= NXWidth
e Make worst-case strength of each path equal

= Multi-input transition can result in stronger network
e Long series stacking is VERY bad

dE;VV Eg:B=2 1

A— 6W 2W
1B W P
B——d[6W |d|: —d[2wW
i Y Jy—e 8 whw ‘
~
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-
/Accounting for/Velocity Saturation
W

e Series stacking is actually less velocity saturated
= |f we use R = (4/3)R

no_stack —

* Adjust the size of/non-stacked devices,to account for
//
I

stack

2W

1o—
B——d[6W |<1I: —d[2W
i A

4W/3
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P:N Ratio for Minimum Delay?

e Delay of 2 inverters:

W, out

Wy

o t, = ty(1+1/kP)(1+B)

. dt /dB =0
= tN(l_k/BZ)

=

W,

Wy

Assumptions:

* Rpprv ~ Ro'/ @
* Rypry ~ Ro'/W d,w
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P:N Ratio for Equal/Minimum Delay

e Delay of 2 inverters:

NMOS: more drive
for a given size, so

it is better to use
more NMOS
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FO4 Inverter Delay vs. P:N Ratio 8

e Optimal B = sqrt(p) for minimum delay
= Curve is relatively flat so not a strong delay tradeoff

e
n

FO4 inverter delay ()

(o))
L

A
1

"‘ ' J T 1
VZ 1.5 V25 \3 2 2.5 3
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An ldea: Tapermg - —

P ni‘P@

_L/é rRoS U]

* Ccloser to the v-source: less effect on delay on O@[\(/?

" N =2:t, = Ry(Cy)+(Ry+R,)(C,)
* C, has less effect on delay than C,

out

e So taper stacked devices for speedup Rs!
= Make the bottom ones bigger R,| % E=

* R, (many occurrences)

. R, |
has less resistance 1 _I

e C; (multiplying larger R)
has smaller capacitance GND

In reality, tapering doesn’t win as much because layout is less

compact when stacking unequal sized transistors (causing more C)
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Gate Design for Min Delay

e Which scenario (A, B) has faster delay?
= Drive the same output load

A: N-in NAND + INV B: N/2-in NAND + NOR

toa tos
B h g 28W,
BW, /f BW. W BW /f s BW, N_BfW,
N-in — b—| X)—{ ‘>O N/2-in — bﬁx ) |>
— W, fw_ — Wi W,
NwW, /f N/2)(W,)/f

Let’s analyze building blocks: NAND, NOR, INV
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Delay of N-input NAND

Assumptions: N-stack NMOS:
e Cg=C,=C, [fF/um] N-W, /f
e R =R,W-um
- out
@ R1 é. I LOAD
For N inputs: .
¢ R,=..=Ry=R,/(NW_/f) 7 [~ % o=
e C,=..=Cy=NCW,/f - /. ) "2
O roney | HY
N-1
pWy

tp — Z iRiCi + Rtot(CN + NCO + Cgate)

=1

f
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Delay of N-input NAND

N-1
R BW.,
tp = lRiCi + Rtot(CN + NCO f + Cgate)
= Pt —=
- Jz]
N-1 I NW’/
SRR /s

t, = z iRyCo + Ro(NCo + NCoB + Cyare -

=N/ m\;/ e

NMOS PMOS Output

N(N—-1)
2

Cgate f )

+ N |+ RoCo | BN +
) 0 O(ﬁ CO Wn

tp —_ R()CO (
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Delay of Inverter

BW,_ /f

—j [:Bwn Dsfwn
N-in E
NW,/f “(':)( - s

par “gate

Inverter:

* Riyv = Ro/W,

° CL,INV = Cpar + Cgate = CO(W) + f Wn(1+B))
e t,\v = RoCol1+B)(1+f)

Cgate,INV = Co(Wn( 1+B))
M
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Delay of NOR2

_Bwn /f 2BW, BfW._ \e-yl/'L s el
aed pARIRE dnTh
N2W)/f ¢’ ¢ (_J—:I
par “~gate .
<J\[ g ”ltlj W n
* Ryor = Ro/W, /

® Cinor=Coar + Conie = Co(W, (2+2B) + f W _(1+B))
e tyor = RyCo(1+B)(2+f)

cgate,NOR = co(Wn( 1+2B))
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Delay Comparison (B = 2)

N(N-1)
tpA =ROC0 2 +3N+3f +ROC0(3f‘|‘3)

B: N/2-in NAND + NOR

N(g‘l) 3N
th =R()CO 4 + 2 +5f +R0C0(3f+6)

Assume f = k
N =7 @ crossover
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Delay Comparison ( = 2)

N

4 21+6f | 13+8f | 39|37 | 45|45 | 51|53 |

6 36+6f | 21+8f | 54|42 | 60|53 | 66 | 61

3 55+6f | 30+8f | 73|54 | 79 | 62 | 85 | 70
A|lB A|B A|B

Min t: don’t build gates with fan-in > 4
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Transmission Gate Sizing

Try to make a TG with/TRPD = RJ

P:N ratio of k is not good for delay

e NMOS still has some pull-up strength
(even if not all the way to V)
= No need to have wide PMOS

e PMOS has some pull-down (but very weak)
= PD slightly faster (NMOS is stronger)
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TG Sizing: Some Common Numbers

[/x penaW weak transition

Ry,on = R kQ-um | Ry yp= 2R, kQ-um
Rpup = 2.5R, kQ-pm | R, oy = 5R, kQ-pm

*let’'stryW =W Slightly
* Parallel Up, Rygup= Ry up | [Rp yp= 1.1R, / faster
* Parallel Down, Rygpn= Ry pn | | Rp oy = 0.83R,
//\ jﬁoy TTOngmi ¢ Lirr QO’A@

* So, using W /W, =1 is fairly reasonable
e Actual size may depend on the process technology
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Delay Analysis (So Far): Summary

e Device R and C determine circuit performance

e Elmore Delay approximation: initial insight into design
= Step response, does not account for signal slopes

" Need slope correction [see slide 2.63]

e The sizing of the transistors (a first glimpse)
= Determines V,,

= Determines Ry, as well C__, it presents to the
preceding gate which effects the delay

e Large fan-in gates:
large self-loading and loading to the preceding gate

= Split into 2 gates when fan-in >4
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Speed Optimization via Gate Sizing

e Gate sizing basics
= P:N ratio
= Complex gates
= Velocity saturation
= Tapering

IZ> e Developing intuition
= Number of stages vs. fanout
= Popular inverter chain example
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Problem Statement

ing Coi” 2\ out,

L Combinational =
in, C, Logic Network outII ‘°°

L\l J
— _/

v

e Given:
= Arbitrary logic function
= Gate-level implementation

e How do we decide the relative size of each gate?

e Constraints:
= C,, (load)

= C, (driver load)

= Max delay
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Simplified Problem: Buffering

an.1 Wy

o,
I

e Assume: B =k
= R, = Pull down for NMOS with size W,
or PMOS with size BW,

= C, = Gate capacitance of N+PMOS of size W,, BW,
* Ignore Sounce/Praim&\Wire Capacitance for now

" To = RoGCo

e Goal: find mo minimize delay
— . ——
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Delay Calculation

Wn=W, aW, a,W, an1Wo

Stage 1
0> Gk Lo v
jnguore Cpar - W4F TE € o f ERo(1 e g
e Delay of stage 1: a,C,R, = a,T, Gles L\Jf)fi X
QO #
S /
e Delay of stage 2: = a, [a;T,
[ &/CV
: }/ bt
soh T Gk Gpy -
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Optimal Fanout for Given N

e Fanout calculation:
= Stage 1=a,, Stage2=a,/a, g%t %@)@7/%
[~

e Assuming that the fanout of‘each stage is equal, a,
"a; =3y, 3, =3y%,a3=ag’

- —_ N

e Total Delay = Sum (Delay of stage 1:N)
* Delay = t,Na,

1
. Since@? C:Z j‘> ag = (Cout)ﬁ

- Cout/C'n = aOI\|

X/QLW@/Q%@M
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Optimum Number of Stages

In (—%““t)
JIENEIC WAV N = n

d|toa '
dDela 0%0
Min delay: 5 24 = — aan(aO) -=0
0 0

1
1 (Cout)N ln(cout)
dDelay 1 (Coye \V C;, Cin)
dN To B
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Optimum Number of Stages

4579 Zero self-loading
€ 40 f
S
£ 35 e
> 30
(©
< 25
Q0 20
15 w w w w
1 2 3 4 5 6

Fanout

Set number of stages to reach optimal fanout
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Constant Fanout Per Stage?

Intuition:
What if we increase the size of a stage by (1+4)?

R reduces less quickly
than Cincreases

* Rppy X 1/(1+4)

e C .4 (Previous stage) < (1+A)

Delay is summed and would increase
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(Constant FO) Mathematically

e Delay =t,(a, + a,/a, + a,/a,+ a,/a.+a.fa, +...)
o\*~1 27 1 37 %2 47 ~'3 57 %4

e dDelay/da; =0
* dDelay/da, = t,(1- a,/a,?)
*Soa,’=a,

e dDelay/da, =0
 dDelay/da, = 1,(1/a; - a5 /a,?)
= So a,”=a,a,, thus a,;®>= a;

—> Min delay: equal fanout
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Optimal Buffering with Self-Loading

e Intuition: without self-loading
= Delay decreases proportional to the decrease in N
= But increasing fanout increases delay proportionally
= The two are equal @J/tie optimal N and fanou

v —_— —

—

e |ntuition: with self-loading
= Increasing FO no longer increases delay proportionally
* Delay = Ry(FO-Cy+ C,,)
= New N would be less and FO is;gger

bw'
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(Buffering with S eIf-LoDa/dl‘lfyﬁ\r/Iathematically
Cl

All equations remain the same except Delay

- ln (Cout)-
o v ) i

o+ Co /| In(ayp)
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Optimal Buffering as fn (Self-Loading)

e A reasonable choice for optimal delay isl@
|

60 \ \ — J
1+— ~
50 ap =e 9o | ON\f \ VO }DU\@
40 e, &Ol
L &
> \g J .\Q
© o /‘Q >
= 30 - o o
O SR
: s
20 -~ p=0 [2)
- p=1
—— p=2
10+ —&— p=3 pP= Cpar/ Cgate
-8- p=4
0 -= p=5
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Optimal FO for
tIO > 1

p,min



Buffer Optimization for Energy-Delay

e Minimizing for Energy is trivial: min gate size
e Instead minimize Energy-Delay product

Constant FO (all stages)

gl
£l
O 6/
5 5’ “-“‘:::: 000000AAAALL TAAAAAAAAL
> o Result: |arger FO
L 4
[ T .
o 3 FO =5 Is pretty
|> VOOOE 0O YOIV _e_p=0
&0 2| 5 v p=1 reasonable
O e
c 1 p=1 - p=4 |
L) 0 | | ‘ | -0— p=5

2 4 6 8 10

Fanout
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Issue with Optimal Energy-Delay

e Constant fanout is not a good assumption 7 %; %ﬁ;

e Intuition: Mﬁ 9Q5{ L;Qré P%;’D FOZ \%\J

7

= Size of the final stage maters the most (use max/%n(g/ut)
= Reduce fanout of prior stages to compensate... 7/ %

e Example: C,_ =1, C .= 1000, 4 gate stages

C |FO | 1|56 |56]|56|31.6]|56 |177.8|5.6| 32200
C |FO | 1|48 |48|49|23.1|54 |1245]|8.0] 31100

AN

Tapered fanout reduces EDP
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What if Fanout is Low?

e Example: large N (each stage drives small fanout)
= Delay is logic limited, so reduce N
= Balance Fanout so that they are equal

e Try to adjust N such that each stage has FO ~ 4
= More complex logic for smaller N

e OK, but not very systematic...
= Logical effort (next lecture) to formalize sizing
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Energy-Delay Optimization (Lecture 14)

Variables: Gate size, Supply Voltage, Threshold Voltage

Energy
\

NS

min)

0 Delay
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Summary

e Delay of a logic network depends significantly on the
relative size of logic gates

= Not transistors within a gate

e Inverter buffering is a simple example of the analysis

= The analysis leads to FO ~ 4 as being optimal fanout for
driving larger capacitive loads

= The number of stages is optimized when FO ~ 4

= For delays longer than minimum, tapered FO works
best for minimizing power (more on this in Lec 14)
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