
Logical Effort

Prof. Dejan Marković
ee216a@gmail.com

ECE M216A

D. Markovic / Slide 2

Concept of Logical Effort

Instead of running lots of simulations

• Simplified calculation of delay

Delay ∝ Rgate(Cload + Cself) = RgateCload + RgateCself

• Normalize to a technology time constant, τ

Logical effort delay equation (D = d∙τ):

4.2

d = f + p

Normalized
delay

Effort
delay

Parasitic
delay

D. Markovic / Slide 3

The Logical Effort Way of Thinking

• Gate delay we used until now:

𝑫𝒆𝒍𝒂𝒚 = 𝟎. 𝟔𝟗𝑹𝒈𝒂𝒕𝒆(𝑪𝒑𝒂𝒓 + 𝑪𝒐𝒖𝒕)

𝑫𝒆𝒍𝒂𝒚 = 𝟎. 𝟔𝟗 𝑹𝒈𝒂𝒕𝒆𝑪𝒊𝒏,𝒈𝒂𝒕𝒆
𝑪𝒑𝒂𝒓

𝑪𝒊𝒏,𝒈𝒂𝒕𝒆
+

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝑫𝒆𝒍𝒂𝒚 = 𝟎. 𝟔𝟗 𝝉𝒈𝒂𝒕𝒆
𝑪𝒑𝒂𝒓

𝑪𝒊𝒏,𝒈𝒂𝒕𝒆
+

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

4.3

• Another way to write this formula:

D. Markovic / Slide 4

Now Normalize the Delay

Strategy: normalize to the time constant of an inverter

𝑫𝒆𝒍𝒂𝒚

𝝉𝑰𝑵𝑽
=
𝝉𝒈𝒂𝒕𝒆

𝝉𝑰𝑵𝑽
𝜸𝒈𝒂𝒕𝒆 +

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝑫𝒆𝒍𝒂𝒚

𝒕𝒑𝟎,𝑰𝑵𝑽
=

𝝉𝒈𝒂𝒕𝒆

𝝉𝒑𝟎,𝑰𝑵𝑽
𝜸𝒈𝒂𝒕𝒆 +

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

4.4

• Method 1: normalize to 𝝉𝑰𝑵𝑽 = 𝑹𝑰𝑵𝑽𝑪𝒊𝒏,𝑰𝑵𝑽

• Method 2: normalize to 𝝉𝒑𝟎,𝑰𝑵𝑽 = 𝑹𝑰𝑵𝑽𝑪𝒑𝒂𝒓,𝑰𝑵𝑽

D. Markovic / Slide 5

We Will Use Method 1

Normalize to the time constant of an inverter

𝑫𝒆𝒍𝒂𝒚

𝝉𝑰𝑵𝑽
=
𝝉𝒈𝒂𝒕𝒆

𝝉𝑰𝑵𝑽
𝜸𝒈𝒂𝒕𝒆 +

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

4.5

𝝉𝑰𝑵𝑽 = 𝑹𝑰𝑵𝑽𝑪𝒊𝒏,𝑰𝑵𝑽

• Used in the original logical effort theory

• Doesn’t really matter: just a constant

D. Markovic / Slide 6

Normalized Delay

Normalized delay:

𝑫𝒆𝒍𝒂𝒚

𝝉𝑰𝑵𝑽
= 𝒅 =

𝝉𝒈𝒂𝒕𝒆

𝝉𝑰𝑵𝑽
𝜸𝒈𝒂𝒕𝒆 +

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝒅 = 𝒈 𝜸𝒈𝒂𝒕𝒆 + 𝒉

𝒅 = 𝒈 ⋅ 𝒉 + 𝒑 ⋅ 𝜸

4.6

Even simpler:

Logical
effort

Fanout Parasitic
effort

D. Markovic / Slide 7

Logical Effort Terms: Mathematical View

𝒈 =
𝑹𝒈𝒂𝒕𝒆 ⋅ 𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝑹𝑰𝑵𝑽 ⋅ 𝑪𝒊𝒏,𝑰𝑵𝑽
𝒉 =

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝒑 =
𝑪𝒑𝒂𝒓,𝒈𝒂𝒕𝒆

𝑪𝒑𝒂𝒓,𝑰𝑵𝑽

4.7

Logical effort Fanout Parasitic effort

𝑫𝒆𝒍𝒂𝒚

𝝉𝑰𝑵𝑽
= 𝒅 =

𝝉𝒈𝒂𝒕𝒆

𝝉𝑰𝑵𝑽
𝜸𝒈𝒂𝒕𝒆 +

𝑪𝒐𝒖𝒕
𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝒅 = 𝒈 ⋅ 𝒉 + 𝒑 ⋅ 𝜸

D. Markovic / Slide 8

Logical Effort (g): Intuitive View

4.8

• Ron ratio for equal Cin

• Cin ratio for equal Ron

𝒈 =
𝑹𝒈𝒂𝒕𝒆 ⋅ 𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝑹𝑰𝑵𝑽 ⋅ 𝑪𝒊𝒏,𝑰𝑵𝑽

D. Markovic / Slide 9

Logical Effort (g): Intuitive View

4.9

• Ron ratio for equal Cin

• Cin ratio for equal Ron

Cost of doing logic

𝒈 =
𝑹𝒈𝒂𝒕𝒆 ⋅ 𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝑹𝑰𝑵𝑽 ⋅ 𝑪𝒊𝒏,𝑰𝑵𝑽

D. Markovic / Slide 10

g is NOT a Function of Gate Size

4.10

• Unitless inherent characteristic of the gate

• A function of the construction of the gate
(topology and relative size of transistors)

• The cost of implementing the function

D. Markovic / Slide 11

Fanout (h)

Ratio of gate caps (only)
Diffusion counts in the p term

4.11

𝒉 =
𝑪𝒐𝒖𝒕

𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

D. Markovic / Slide 12

Parasitic Effort (p): Intuitive View

Ratio of parasitic caps
assuming equal Ron

4.12

𝒑 =
𝑪𝒑𝒂𝒓,𝒈𝒂𝒕𝒆

𝑪𝒑𝒂𝒓,𝑰𝑵𝑽

𝒑 = 𝒈
𝜸𝒈𝒂𝒕𝒆

𝜸𝑰𝑵𝑽
=
𝑹𝑪𝒊𝒏,𝒈𝒂𝒕𝒆

𝑹𝑪𝒊𝒏,𝑰𝑵𝑽
⋅
𝑪𝒑𝒂𝒓,𝒈𝒂𝒕𝒆

𝑪𝒊𝒏,𝒈𝒂𝒕𝒆
⋅
𝑪𝒊𝒏,𝑰𝑵𝑽
𝑪𝒑𝒂𝒓,𝑰𝑵𝑽

=
𝑪𝒑𝒂𝒓,𝒈𝒂𝒕𝒆

𝑪𝒑𝒂𝒓,𝑰𝑵𝑽

Note: parasitic delay = 𝒑 ⋅ 𝜸

D. Markovic / Slide 13

Computing Logical Effort: g

1. Choose an input, find total device with of that input

2. Find Wp of a single device that has equivalent drive
strength as the gate’s pull-up of that input

3. For a reference INV (given β) and WP from Step 2,
find the total gate widths of the inverter devices

4. Divide Step 2 by Step 3 to determine gup

5. Repeat Steps 2-4 for pull-down for gdown

[Under what β is gup = gdown?]

4.13

D. Markovic / Slide 14

• Ratio of the gate input cap to the input cap of an
equal-strength (same output current) inverter

(by definition) NAND2

4.14

Example: Calculating Logical Effort

𝒈 =
𝟒

𝟑

Cin = 4

Cin = 5

NOR2

𝒈 =
𝟓

𝟑

Cin = 3

𝒈 = 𝟏

Ref INV

D. Markovic / Slide 15

2-input NOR
• β = k = 3

A

B

Out

12

2 2

12

4.15

Example 4.1a: Logical Effort, NOR (β = 3)

Equivalent INV
• Wp : Wn = 6 : 2
• Cgate,INV = 8

• Cgate,NOR = 14

𝒈𝑵𝑶𝑹 =
𝟕

𝟒

Assumption:

D. Markovic / Slide 16

Example: Calculating Parasitic Delay

• Ratio of intrinsic cap at the gate output and intrinsic cap
at the output of an equivalent inverter

4.16

(by definition) NAND2

𝒑 = 𝟐

Cpar = 6

Cpar = 6

NOR2

Cpar = 3

𝒑 = 𝟏

Ref INV

𝒑 = 𝟐

D. Markovic / Slide 174.17

Example 4.1b: Parasitic Delay, NOR (β = 3)

𝜸 = 𝟎. 𝟓

Assumption:

Equivalent INV
• Wp : Wn = 6 : 2
• Cpar,INV = 8

• Cpar,NOR = 16

𝒑𝑵𝑶𝑹 = 𝟐A

B

Out

12

2 2

12

A 2

6

R/12

R/12

2R/12 = R/6
R/6

D. Markovic / Slide 18

One way to account for them is to use an “effective” p

• Input and transition dependent (lots of p’s to track)

C2

C1

4.18

𝒕𝒑𝒂𝒓,𝑵𝑶𝑹 ∝
𝑹

𝟐
𝑪𝟏 + 𝑹𝑪𝟐

𝒑𝑼𝑷 𝑩 =

𝑪𝟏
𝟐
+ 𝑪𝟐

𝑪𝒑𝒂𝒓,𝑰𝑵𝑽
A

B

Out

12

2 2

12

Example: pull up, B input

• C1 = 6C0 (shared)
• C2 = 8C0

Example 4.1c: Intermediate Nodes? (p)

𝒑𝑼𝑷 𝑩 =
𝟏𝟏

𝟒
= 𝟐. 𝟕𝟓

S

D S

D

D. Markovic / Slide 19

Diffusion Sharing: Stack vs. Finger Layout

• Stack (W)

4.19

S

D S

D

• Two finger layout • Stack + finger
layout

W/2

Weff = W

Vdd

Out

X

W/2

W/2

W

W/2

W/2

X

Vdd

Out

Takeaways:
1) Finger layout reduces Cpar at output
2) Finger layout increases Cpar at intermediate
3) Stacking allows sharing of non-finger layout

transistors and results in lower Cpar

4) Ron ~ 1/W and is not affected by D/S sharing

Diffusion caps:
Cout ~ W/2
Cx ~ 1.5*W

Diffusion caps:
Cout ~ W
Cx ~ W

D. Markovic / Slide 20

Generalize N-input NAND

2

N C2=NC0

N

C1=(2N+N)C0
2

C3=NC0

4.20

Output:
PMOS
NMOS

Internal:
NMOS (shared diffusion)

D. Markovic / Slide 21

Generalize N-input NAND

Total pull down parasitic delay

4.21

𝒕𝒑𝒂𝒓,𝑵𝑨𝑵𝑫 ∝ 𝑹 𝟑𝑵𝑪𝟎 +

𝒊=𝟏

𝑵−𝟏
𝒊𝑹

𝑵
𝑵𝑪𝟎

𝒅𝒑𝒂𝒓,𝑵𝑨𝑵𝑫 = 𝟑𝑵 +
𝑵 𝑵− 𝟏

𝟐

𝒑𝑵𝑨𝑵𝑫 = 𝑵+
𝑵 𝑵− 𝟏

𝟔
∝ 𝑵𝟐

• Even worse for PMOS (NOR)
▪ Reality is even worse since CGS makes each

intermediate node capacitance > NC0

Large N:

BAD NEWS!

D. Markovic / Slide 22

A Catalog of Gates

Gate type
g for different number of inputs

1 2 3 4 5 n

Inverter 1

NAND 4/3 5/3 6/3 7/3 (n+2)/3

NOR 5/3 7/3 9/3 11/3 (2n+1)/3

Multiplexer 2 2 2 2 2

XOR, XNOR 4 12 32

Gate type Parasitic delay

Inverter 1∙γ

n-input NAND n∙γ

n-input NOR n∙γ

n-way Multiplexer 2n∙γ

2-input XOR, XNOR n2n-1∙γ
4.22

does not include
intermediate
nodes

Assumptions:

• β = k = 2

• Mux: tri-state
INVs shorted
together

• XOR: bundled
in (a, a’)

D. Markovic / Slide 23

Example 4.3: Fanout-of-4 Inverter Delay?

g =

h =

p =

d =

1

Cout /Cin = 4

1

g·h + p·γ = 5

4.23

d

𝜸 = 𝟏

Logical Effort :

Electrical Effort :

Parasitic Delay :

Stage Delay :

(by definition)

(by definition)

D. Markovic / Slide 24

Logical Effort Recap

Normalized delay: d = g·h + p∙γ

• g (= Cin,gate/Cin,INV) is the logical effort

▪ INV sized such that RINV = Rgate

• h (= Cout/Cin) is the electrical effort (fanout)

▪ g·h is the effort delay (“effective fanout”)

• p (= Cpar,gate/Cpar,inv) is the parasitic effort

▪ p∙γ is the parasitic delay

• May have different g, p

▪ Per input, and for pull-up/down

4.24

D. Markovic / Slide 25

What About:

4.25

• Different inputs

• Reference inverter

• Asymmetry

D. Markovic / Slide 26

A Side Note: Total Gate Effort (gtot)

Take total input capacitance: gtot = Cin,tot/CINV

WP:WN = 4:6

4.26

Example: 3-in NAND

• Equivalent INV is 4:2

• One in: gin = 10/6 = 5/3

• Total: gtot = 30/6 = 5

• gtot not very useful to calculate delay

▪ But it is an indication of the “cost” of the gate

▪ Can be useful in gate mapping (logic synthesis)
• Which gate is best to use to map a given Boolean expression

D. Markovic / Slide 27

A Note on Asymmetry

• The gate examples so far have been symmetric

▪ All inputs are essentially identical

▪ P:N ratio is approximately equal to the mobility ratio
• Same as the reference inverter

• Inputs of most gates are not symmetric

▪ Different inputs may see different capacitances

▪ Even series stacked gates may not be the same size

• Pull-up and pull-down is rarely equal resistance

▪ Call this “skewed” gates

4.27

D. Markovic / Slide 28

Asymmetric Example: Different Stack Sizing

The larger g is BAD!
(More effort to do logic)

4.28

A

B

Out

24

2 2

8

Equivalent INV
• Wp : Wn = 6 : 2
• Cgate,INV = 8

2-input NOR
• β = k = 3

Assumption: 𝟏

𝟖
+
𝟏

𝟐𝟒
=
𝟏

𝟔

• Cgate,A = 10
• Cgate,B = 26

𝒈𝑩 =
𝟏𝟑

𝟒
≠
𝟓

𝟒
= 𝒈𝑨

D. Markovic / Slide 29

Asymmetric Example: More Complex Gates

B’A'

C

D

E

A’

B’CDE

12

12

12

12 12

18

18

999

4.29

Equivalent INV
• Wp : Wn = 9 : 3
• Cgate,INV = 12

Assumption:
• β = k = 3

NOT 6 : 2

𝒈𝑬𝑫𝑪 =
𝟐𝟏

𝟏𝟐
=
𝟕

𝟒

𝒈𝑨′𝑩′ =
𝟑𝟎

𝟏𝟐
=
𝟓

𝟐

D. Markovic / Slide 30

What is the Reference Inverter?

• The assumption of logical effort is that the reference
inverter has equal rise and fall delays

• Practical case when pull-up and pull-down resistances
are different (rising and falling delays not equal)

▪ Similar to the parasitic delay calculation earlier
• dUP = gUP·h + pUP

• dDN = gDN·h + pDN

• Since static CMOS gates are inverting, the transitions
through subsequent gates must be alternating

▪ Use an average logical effort (and parasitic effort)
• gAVG = (gUP + gDN)/2

4.30

D. Markovic / Slide 31

Gates with Skewed P:N Ratio

• Assume: β = 1.7, k = 3

Example: Inverter

• Pull-up: reference inverter is sized P:N of WP:WP/k

▪ gUP = WP(1+1/1.7)/WP(1+1/k) = 1.19

• Pull-down: reference inverter is sized P:N of kWN:WN

▪ gDN = WN(1+1.7)/WN(1+k) = 0.675

• gAVG = 0.93 (instead of 1)

▪ Confirms that β should be < k for speed
Reference INV not optimized for speed

4.31

D. Markovic / Slide 32

NAND Gate with Skewed P:N Ratio

• Assume: β = 1.7, k = 3

Example: 2-input NAND Gate

• gUP = WP(1+2/1.7)/WP(1+1/k) = 1.63

• gDN = WN(2+1.7)/WN(1+k) = 0.925

• gAVG = 1.28 (instead of 5/4)

4.32

for β = 3

D. Markovic / Slide 33

Know Your Reference INV

4.33

• Equal rise/fall time: β = 3, k = 3 g = 1

• Minimum delay: β = 1.7, k = 3 gAVG = 0.93

R1

Example: 2-input NAND

• β = 1.7, k = 3

▪ gAVG = 1.28 ref R1

• β = 3, k = 3

▪ g = 5/4 ref R1

1.25 < 1.28

but β = 1.7 should
be min delay?

different PU, PD

D. Markovic / Slide 34

Know Your Reference INV

4.34

• Equal rise/fall time: β = 3, k = 3 g = 1

• Minimum delay: β = 1.7, k = 3 gAVG = 0.93

R1

Example: 2-input NAND

• β = 1.7, k = 3

▪ g = 1.37 ref R2 x 0.93 = 1.28 ref R1

R2

Translate b/w two reference INVs

D. Markovic / Slide 35

Choosing a Reference Inverter

• The reference inverter can be any β

• Choose the reference × inverter β
Use a normalization to adjust the g

Example: 2-input NAND

• gREF = 1 with β = 1.7 (k = 3)

• gAVG_INV(β=k) = 1.16 for β = 3

• NAND2 β = 1.7 has g = 1.37

• NAND2 β = 3 has gAVG = 1.45 = 1.25·1.16

4.35

Captures speed
penalty for β = 3

gNAND for β = 3 w.r.t. β = 3 INV

D. Markovic / Slide 36

Velocity Saturation

• Need to account for the change in resistance

• Assume reference inverter is Wp=2Wn

Example: 2-input NAND, Wp=2, Wn=2

• Assuming Rn_nostack=(4/3)Rn_stack, Rp_nostack=(6/5)Rp_stack

• The equivalent INV with same drive resistance

▪ Pull-up: equiv inv = 2:1, gUP = 4/3 (same as before)

▪ Pull-down: equiv inv = 8/3:4/3, gDN = 4/4 = 1

• Makes sense because v-sat allows the transition through
the series stacking be faster (more current)

4.36

D. Markovic / Slide 37

Multi-Stage

Networks

4.37

D. Markovic / Slide 38

Same Concept Applies at the Path Level

4.38

𝑫 = 𝜸𝑰𝑵𝑽

𝒊=𝟏

𝑵

𝒑𝒊 +

𝒊=𝟏

𝑵

𝒈𝒊𝒉𝒊

Stage effort :

Path electrical effort :

Path logical effort :

Path effort :

fi = gi·hi

H = Cout /Cin

G = g1g2…gN

F = G·H

Path delay :

D. Markovic / Slide 39

Example 4.2: Ring Oscillator

• Estimate the frequency of an N-stage ring oscillator:

4.39

g =

h =

p =

d =

𝒇𝑶𝑺𝑪 =
𝟏

𝟐𝑵𝒅𝝉
=

𝟏

𝟒𝑵𝝉

Cout /Cin = 1

g·h + p·γINV = 2

d

𝜸 = 𝟏

Logical Effort :

Electrical Effort :

Parasitic Delay :

Stage Delay :

OSC frequency :

1

1

D. Markovic / Slide 40

Total Effort for a Path

4.40

𝑮 =ෑ

𝒊=𝟏

𝑵

𝒈𝒊 𝑭 =ෑ

𝒊=𝟏

𝑵

𝒇𝒊𝑯 =
𝑪𝒐𝒖𝒕
𝑪𝒊𝒏

Treat the path as a single “gate”

Logical effort Fanout Path Effort

D. Markovic / Slide 41

Calculations:

• G = (4/3)2(5/3) = 3

• H = 60/4 = 15

• F = 45; F ?= GH
(yes for this case)

g = 4/3

p = 2

g = 4/3

p = 2

g = 5/3

p = 2

Cout=60

WP:WN=2:2

WP:WN=6:6

1
2

3

f1 = 4

f2 = 3.33

f3 = 3.33

WP:WN=24:6

4.41

Example 4.3a: Total Effort (G, H, F)?

Assumption:
• β = 2 (REF)

D. Markovic / Slide 42

Delay of a multi-stage network = sum of stage delays

4.42

Example 4.3a: Total Path Delay?

g = 4/3
p = 2

g = 4/3
p = 2

g = 5/3
p = 2

Cout=60

WP:WN=2:2

WP:WN=6:6

1
2

3

f1 = 4

f2 = 3.33

f3 = 3.33

WP:WN=24:6

Assume: γ = 1

DF = 10.66, P = 6

D = 16.66 (τ delays)

D. Markovic / Slide 43

Branching

Effort

3.43

D. Markovic / Slide 44

Example 4.4: Delay from A to B?

• d1 = g1h1+p1 = 9.5

• d2 = g2h2+p2 = 3.66

Delay = 13.16

A

WP:WN=12:3

WP:WN=20:10

WP:WN=10:5

WP:WN=4:4

G1

G3

G2
G4

B

4.44

Assume:
• β = k = 2
• γ = 1

g = 4/3
p = 2

g = 5/3 | p = 2

30

15

𝒉𝟏 =
𝟒𝟓

𝟖
= 𝟓. 𝟔𝟐𝟓

𝒉𝟐 =
𝟏𝟓

𝟏𝟓
= 𝟏

D. Markovic / Slide 45

Add Branching Effort

• Ratio of total to on-path capacitance

▪ How much more current is needed to supply on-path
(given that some current “flows” off-path)

cload

4.45

𝒃 =
𝑪𝒐𝒏−𝒑𝒂𝒕𝒉 + 𝑪𝒐𝒇𝒇−𝒑𝒂𝒕𝒉

𝑪𝒐𝒏−𝒑𝒂𝒕𝒉

D. Markovic / Slide 46

• Introduce new kind of effort to account for branching:

5

15

15

90

90

G =
H =
F =

f1 =
f2 =
F =

1

90/5 = 18
18 (wrong!)

(15+15)/5 = 6
90/15 = 6
36, not 18!

4.46

Example 4.5: Path Effort F = ?

𝒃 =
𝑪𝒐𝒏−𝒑𝒂𝒕𝒉 + 𝑪𝒐𝒇𝒇−𝒑𝒂𝒕𝒉

𝑪𝒐𝒏−𝒑𝒂𝒕𝒉
𝑩 =ෑ

𝒊=𝟏

𝑵

𝒃𝒊

Branching Effort (BE) Path BE

D. Markovic / Slide 47

Multistage Networks with Branching

4.47

𝑫 = 𝜸𝑰𝑵𝑽

𝒊=𝟏

𝑵

𝒑𝒊 +

𝒊=𝟏

𝑵

𝒈𝒊𝒉𝒊

Stage effort :

Path electrical effort :

Path logical effort :

Path branching effort :

Path effort :

fi = gi·hi

H = Cout /Cin

G = g1g2…gN

B = b1b2…bN

F = G·H·B

Path delay :

D. Markovic / Slide 48

• h1 = (2∙12)/4 = 6

• h2 = (2∙30)/12 = 5

• h3 = 2

• F = (4/3∙6) ∙ (4/3∙5) ∙ (5/3∙2) = 177.8

g = 4/3
p = 2

g = 4/3
p = 2

g = 5/3
p = 2

Cout = 60
Cin = 4

WP:WN = 2:2

WP:WN = 6:6

WP:WN = 24:6

WP:WN = 6:6 WP:WN = 24:6

1
2

3

f1 = 8

f2 = 6.66

f3 = 3.33

f1 = 4

f2 = 3.33

f3 = 3.33

Branching No branch.

4.48

Example 4.6: Path Effort F = ?

F = G·B·H

For circuits with branching:

• G is the same = 3

• H is the same = 15

• F differs

Calculate F:

D. Markovic / Slide 49

What About Interconnects?

• C from wires are difficult to deal with
• Fixed load so intuitively increase fanout

• Short wires – small parasitic capacitance
▪ Treat them as increasing p for each gate

• Not exact but accounts for the effect

• Long wires – large load capacitance
▪ Size of driving gate is as if driving a large C

• Medium wires – most difficult (C ≈ gate load)
▪ Delay as function of gate and wire cap

• Nth-order polynomial and differentiate

▪ More realistic method is to iterate

4.49

D. Markovic / Slide 50

Handling Wires & Fixed Loads

CL

Cw

i

4.50

𝑫 = 𝜸𝑰𝑵𝑽

𝒊=𝟏

𝑵

𝒑𝒊 +

𝒊=𝟏

𝑵

𝒈𝒊 𝒉𝒊 +
𝑪𝑾,𝒊+𝟏

𝑪𝒊

Fixed cap

D. Markovic / Slide 51

Logical Effort Delay Calculation: Summary

• Delay normalized by inverter delay, d = g·h + p·γINV

• g and p are characteristics of a logic gate that depends
on its structure and does not depend on gate size
▪ g’s and p’s depend on input and PU / PD
▪ Simplify: use gAVG, ignore C’s of intermediate nodes

• Once a table of g’s and p’s are created for the catalog
of gates, delay can be calculated quickly and easily

• Next we will look at how to size a network
(instead of just analyzing it)

4.51

D. Markovic / Slide 52

Gate Sizing

Using Logical Effort

3.52

D. Markovic / Slide 53

Optimum Effort per Stage

When each stage bears the same effort:

Minimum path delay :

4.53

𝒇𝑵 = 𝑮 ⋅ 𝑩 ⋅ 𝑯 = 𝑭

𝒇 = 𝑭
𝟏
𝑵

𝒉𝒊 =
𝒇

𝒈𝒊

𝑫𝒎𝒊𝒏 = 𝑵 ⋅ 𝒇 + 𝑷

Stage FO
Complex gates should

drive smaller load

D. Markovic / Slide 54

Courtesy: D. Harris (HMC)

4.54

𝑭 = 𝑮 ×𝑯 = 𝟏 ⋅
𝟓

𝟑
⋅
𝟒

𝟑
⋅ 𝟏 ×

𝟐𝟎

𝟏𝟎
=
𝟒𝟎

𝟗

𝒇 = 𝒈 ⋅ 𝒉 =
𝟒𝟎

𝟗

𝟏
𝟒

= 𝟏. 𝟒𝟓

Example 4.7: (x, y, z) for Min Delay?

• First, compute path effort:

• The optimal stage effort is:

D. Markovic / Slide 554.55

Courtesy: D. Harris (HMC)

Example 4.7: (x, y, z) for Min Delay?

• We can now size the gates:

• Finally, calculate Dmin (γ = 1):

𝑪𝒊𝒏 = 𝒈 ⋅
𝑪𝒐𝒖𝒕
𝒇𝒛 = 𝟏 ⋅

𝟐𝟎

𝟏. 𝟒𝟓
= 𝟏𝟑. 𝟖 𝒙 =

𝟓

𝟑
⋅

𝒚

𝟏. 𝟒𝟓
= 𝟏𝟒. 𝟓

𝒚 =
𝟒

𝟑
⋅

𝒛

𝟏. 𝟒𝟓
= 𝟏𝟐. 𝟕 𝑪𝒊𝒏 = 𝟏 ⋅

𝒙

𝟏. 𝟒𝟓
= 𝟏𝟎

𝑫 = 𝟒 ⋅ 𝒇 + 𝑷 = 𝟒 ⋅ 𝟏. 𝟒𝟓 + 𝟔 = 𝟏𝟏. 𝟖

(sanity check)

D. Markovic / Slide 56

• β = 2

• Cin2, Cin3 = ?

• Wp3, Wp2 = ?
g = 4/3
p = 2

g = 4/3
p = 2

g = 5/3
p = 2

Cout = 60
1 2

3Cin = 4

Gate 2 Gate 3

B = b1b2 = 4

F = 177.8, fopt = 5.62

Cin3 = 5/3*(1*60)/5.6 = 17.9

Cin2 = 4/3*(b2*17.9)/5.6 = 8.5

Cin1 = 4/3*(b1*8.5)/5.6 = 4

4.56

Example 4.8: Min Delay? (Branching)

𝑪𝒊 = 𝒈𝒊 ⋅
𝒃𝒊𝑪𝒊+𝟏
𝒇

* 4/5 = 14.3 = Wp3

* ½ = 4.25 = Wp2

D. Markovic / Slide 57

• Optimal system has all paths with equal delay

• Branching for path 1, b1 = 1 + x

▪ Assumption is that P1 ≈ P2

Cout1

Cout2

Cin1

Cin2

Path 1

4.57

𝑫𝟏 = 𝑫𝟐

𝑵 ⋅ 𝒇𝟏 + 𝑷𝟏 = 𝑵 ⋅ 𝒇𝟐 + 𝑷𝟐

𝑭𝟏 =
𝑮𝟏𝑪𝒐𝒖𝒕𝟏
𝑪𝒊𝒏𝟏

= 𝑭𝟐 =
𝑮𝟐𝑪𝒐𝒖𝒕𝟐
𝑪𝒊𝒏𝟐

𝑪𝒊𝒏𝟐
𝑪𝒊𝒏𝟏

= 𝒙 =
𝑪𝒐𝒖𝒕𝟐
𝑪𝒐𝒖𝒕𝟏

Branches: Same # Stages, Different Loads

Cin2/Cin1 = ?

D. Markovic / Slide 58

Path Effort Estimate

• With equal-stage branches, H can be estimated
without knowing each stage’s b
▪ H = (Cout1+Cout2)/Cin (with B = 1)

• Example for Path 1:

▪ G = gNAND

▪ H1 = Cout1/Cin

▪ B1 = (1+Cout2/Cout1)

▪ F = G·H1·B = gNAND(Cout1+Cout2)/Cin

▪ Same as F = G·H

• Error if different G and P in the two paths

Cout1

Cout2

Cin1

Cin2

Path 1

Cin

4.58

D. Markovic / Slide 59

Unequal-Length Branches (Not Easy)

Solving precisely, example:

• 2dinv − p = Cout1/C1

• (dinv − p)2 = Cout2/C2

• dnand = gnand(C1 + C2)/Cin

Cout2

= H2·Cin

Cin = 1

Cout1 = H1·Cin

dinv dinv

2dinv

dnand

1

2

C1

C2

4.59

• fopt differs between two paths

• C1 = Cout1/(2dinv − p)

• C2 = Cout2/(dinv − p)2

D. Markovic / Slide 60

Unequal-Length Branches (Not Easy)

• D = gnand(Cout1/(2dinv − p) + Cout2 /(dinv − p)2) + 2dinv

• Take partial derivative of ∂D/∂(dinv)

Cout2

= H2·Cin

Cin = 1

Cout1 = H1·Cin

dinv dinv

2dinv

dnand

1

2

C1

C2

4.60

• Not easy so ignore p to simplify
▪ If gNAND = 4/3, H1 = H2 = 3 : dnand = 2.35, dinv = 1.80
▪ The per stage f = g·h (no p) is different per stage

• Most branches are relatively long or not critical path

D. Markovic / Slide 61

Re-convergent Paths

• Recombined branches add complexity to logical effort
▪ Typically constrains the sizing problem

Cout

Cin
x

y
z

fa
fb

fc2x NANDz

4.61

Example: ignore parasitics. Let x = Cin = 1
• fa = y+z (x = 1)
• fb = 3z/y
• fc = gNANDCout/z

2 variables

D. Markovic / Slide 62

Re-convergent Paths

Cout

Cin
x

y
z

fa

fb

fc2x NANDz

4.62

• Constrain with fa = fb = fc

• 2 variables, 2 equations (directly solve)
▪ Any constraints are possible

• Increase variables by introducing more buffering
(parallel to y)

y+z = 3z/y = gNANDCout/z

D. Markovic / Slide 63

• Symmetric 8-input AND (β = k = 2, 3W0 is unit C)
• Logical effort

▪ G = 10/3, B = 1, H = 100
▪ F = 333.3
▪ For 2 stages, fopt = 18.3

• h2 = 18.3, Cin2 = 5.5, WP = 11W0

• h1 = 5.5, Cin1 = 1, WP = 0.6W0

• Delay = 36.6 + 9 = 45.6

▪ Buffering
• For 3 stages, fopt = 7 (1 extra inverter), Delay = 31
• For 4 stages, fopt = 4.3 (2 extra inverters), Delay = 28.2
• For 5 stages, fopt = 3.19 (closer to 3.6), Delay=28
• For 6 stages, fopt = 2.63 (below 3.6), Delay=28.8

x8 G1 G2

4.63

g = 10/3
p = 8

g = 1
p = 1

Cout

= 100

Cin = 1

Example 4.9: Logic Optimization Example

D. Markovic / Slide 64

• Many ways to implement
this same function

• Use a tree of fewer input AND gates

▪ (A0A1)(A2A3)…

▪ If multiple ANDs
(as in a mem decoder),
then partial results
can be shared

4.64

Example 4.9: Other Implementations

D. Markovic / Slide 65

• F = G·B·H = 4/33 ·100 = 235
• fopt = 2.48 (too small)
• D = 6·2.48 + 3·2 + 3·1 = 14.88 + 9 = 23.88

▪ Still better than 8-input NAND

• Optimal sizing
▪ G7: Cin7 = 100ginv/f = 40, Wp = 80W0

▪ G6: Cin6 = Cin7gnand/f = 21.5, Wp = 32W0

▪ G5: Cin5 = Cin6ginv/f = 8.7, Wp = 17.4W0

▪ G4: Cin4 = Cin5gnand/f = 4.7, Wp = 7W0

▪ G3: Cin3 = Cin4ginv/f = 1.88, Wp = 3.8W0

▪ Double check G2: Cin = gnandCin3/f = 1, WP=1.5W0

out

Cout = 100

G7G6G5G4G3G2

Cin = 1

4.65

Example 4.9: 2-input Implementation

D. Markovic / Slide 66

• F = B·G·H = 4/3·6/3·100 = 266
• fopt = 4.04 (a tad high)
• D = 4·4.04 + 1·4 + 1·2 + 2·1 = 16 .:. 16 + 8 = 24.16

▪ Slightly worse than 2-input! Due to self-loading

• Optimal sizing
▪ G5: Cin5 = 100ginv/f = 24.75, WP=50W0

▪ G4: Cin4 = Cin5gnand/f = 8.16, WP=12.5W0

▪ G3: Cin3 = Cin4ginv/f = 2.02, WP=4W0

▪ Double check G2: Cin = gnand4Cin3/f = 1, WP=1.0W0

out

Cout = 100

G5G4G3G2

Cin = 1

4.66

Example 4.9: 4-input Implementation

D. Markovic / Slide 67

• F= BGH = 4/32*5/3*100 = 296

• fopt = 4.14 (a tad high)

• D = 4·4.14 + 3·2 + 1·1 = 16.56 + 7 = 23.6 (Best one!)

• Optimal sizing

▪ G5: Cin5= 100ginv/f = 24.1, Wp = 48W0

▪ G4: Cin4 = Cin5gnand/f = 7.76, Wp = 11.6W0

▪ G3: Cin3 = Cin4gnor/f = 3.125, Wp = 7.5W0

▪ Double check G2: Cin = gnandCin3/f = 1, Wp = 1.5W0

• Lesson: use close to optimal f, use gates with small p

out

Cout = 100

G5G4G3G2

Cin = 1

4.67

Example 4.9: 2-NOR Implementation

D. Markovic / Slide 68

Logical Effort “Design Flow” (Min Delay)

• Compute the path effort: F = G·B·H

• Find the best number of stages: Nopt ~ log4(F)

• Compute the stage effort: f = (F)1/N

• Working from either end, determine gate sizes:

Reference: Sutherland, Sproul, Harris, “Logical Effort,” (Morgan-Kaufmann 1999)

4.68

𝑪𝒊 = 𝒈𝒊 ⋅
𝒃𝒊𝑪𝒊+𝟏
𝒇

D. Markovic / Slide 69

Summary of LE Design Methodology

1. Buffer non-critical paths with minimum-sized gates
• Minimize loading on critical path
• Simplifies sizing of non-critical path

2. Estimate total effort along each path (without branching)

3. Verify that the number of stages is appropriate
• Add inverters if fopt > 5

4. Assign branch ratio of each branch
• Estimate based on the ratio of the effort of the paths
• Ignore paths that have little effect (i.e. min-sized)
• Include wire capacitances

5. Compute delays for the design (include parasitic delay)
• Adjust branching ratios (especially with Cwire)
• Repeat if necessary until delay meets specification

6. Re-optimize logic network if fopt is small (Return to step 3)

4.69

