

Prof. Dejan Marković ee216a@gmail.com

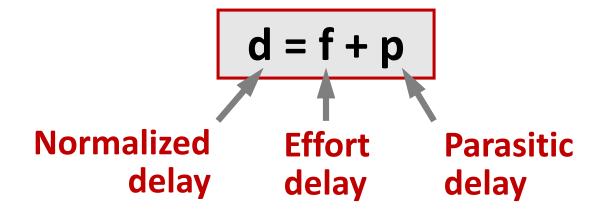
Concept of Logical Effort

Instead of running lots of simulations

Simplified calculation of delay

Delay $\propto R_{gate}(C_{load} + C_{self}) = R_{gate}C_{load} + R_{gate}C_{self}$ • Normalize to a technology time constant, τ

Logical effort delay equation (D = $d \cdot \tau$):



The Logical Effort Way of Thinking

• Gate delay we used until now:

$$Delay = 0.69R_{gate}(C_{par} + C_{out})$$

• Another way to write this formula:

$$Delay = 0.69 R_{gate} C_{in,gate} \left(\frac{C_{par}}{C_{in,gate}} + \frac{C_{out}}{C_{in,gate}} \right)$$
$$Delay = 0.69 \tau_{gate} \left(\frac{C_{par}}{C_{in,gate}} + \frac{C_{out}}{C_{in,gate}} \right)$$

Now Normalize the Delay

Strategy: normalize to the time constant of an inverter

• Method 1: normalize to $\tau_{INV} = R_{INV}C_{in,INV}$

$$\frac{Delay}{\tau_{INV}} = \frac{\tau_{gate}}{\tau_{INV}} \left(\gamma_{gate} + \frac{C_{out}}{C_{in,gate}} \right)$$

2 • Method 2: normalize to $\tau_{p0,INV} = R_{INV}C_{par,INV}$

$$\frac{Delay}{t_{p0,INV}} = \frac{\tau_{gate}}{\tau_{p0,INV}} \left(\gamma_{gate} + \frac{C_{out}}{C_{in,gate}} \right)$$

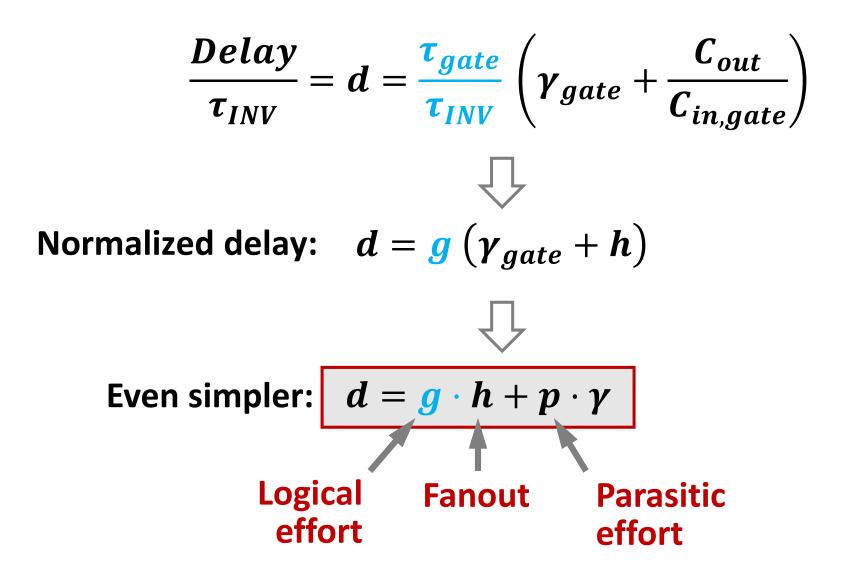
We Will Use Method 1

Normalize to the time constant of an inverter

 $\tau_{INV} = R_{INV}C_{in,INV}$

- Used in the original logical effort theory
- Doesn't really matter: just a constant

Normalized Delay



Logical Effort Terms: Mathematical View

$$\frac{Delay}{\tau_{INV}} = d = \frac{\tau_{gate}}{\tau_{INV}} \left(\gamma_{gate} + \frac{C_{out}}{C_{in,gate}} \right)$$
$$Quad dots denote by the second s$$

Logical effortFanoutParasitic effort
$$g = \frac{R_{gate} \cdot C_{in,gate}}{R_{INV} \cdot C_{in,INV}}$$
 $h = \frac{C_{out}}{C_{in,gate}}$ $p = \frac{C_{par,gate}}{C_{par,INV}}$

Logical Effort (g): Intuitive View

$$g = \frac{R_{gate} \cdot C_{in,gate}}{R_{INV} \cdot C_{in,INV}}$$

Logical Effort (g): Intuitive View

$$g = \frac{R_{gate} \cdot C_{in,gate}}{R_{INV} \cdot C_{in,INV}}$$

2 • C_{in} ratio for equal R_{on}

Cost of doing logic

g is NOT a Function of Gate Size

- Unitless inherent characteristic of the gate
- A function of the construction of the gate (topology and relative size of transistors)
- The cost of implementing the function

Fanout (h)

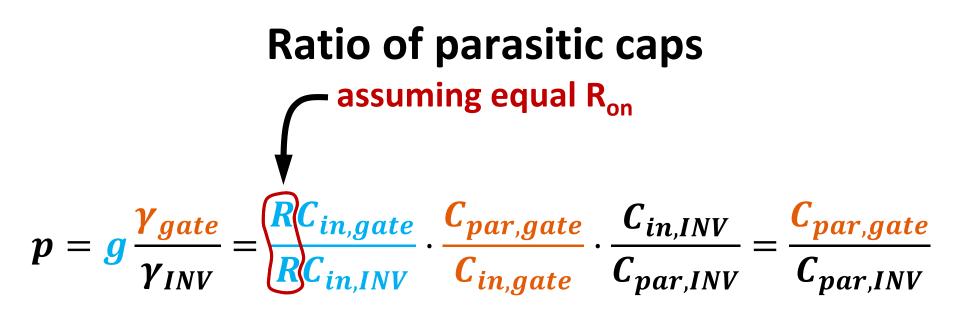
$$h = \frac{C_{out}}{C_{in,gate}}$$

Ratio of gate caps (only) Diffusion counts in the p term

Parasitic Effort (p): Intuitive View

Note: parasitic delay = $p \cdot \gamma$

$$p = \frac{C_{par,gate}}{C_{par,INV}}$$



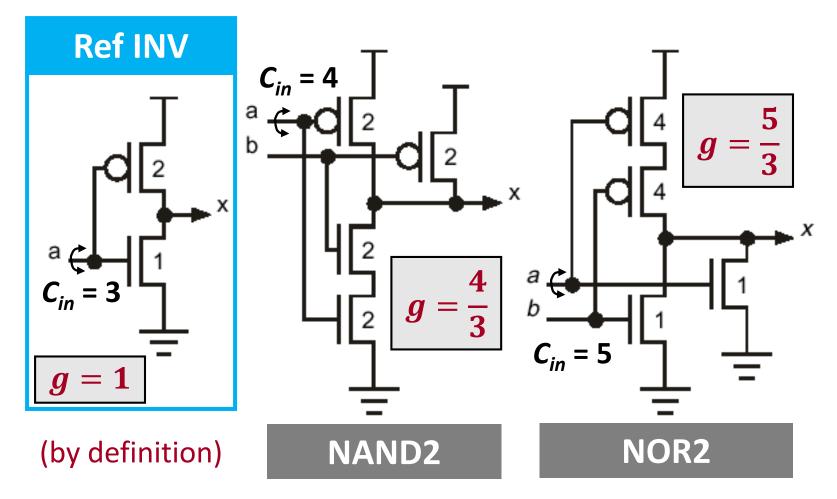
Computing Logical Effort: g

- **1.** Choose an input, find total device with of that input
- **2.** Find W_p of a single device that has equivalent drive strength as the gate's pull-up of that input
- **3.** For a reference INV (given β) and W_P from Step 2, find the total gate widths of the inverter devices
- 4. Divide Step 2 by Step 3 to determine g_{up}
- 5. Repeat Steps 2-4 for pull-down for g_{down}

[Under what β is $g_{up} = g_{down}$?]

Example: Calculating Logical Effort

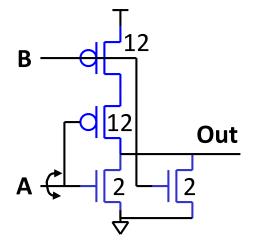
• Ratio of the gate input cap to the input cap of an equal-strength (same output current) inverter



Example 4.1a: Logical Effort, NOR ($\beta = 3$)

Assumption:

Equivalent INV • $W_p : W_n = 6 : 2$ • $C_{gate,INV} = 8$

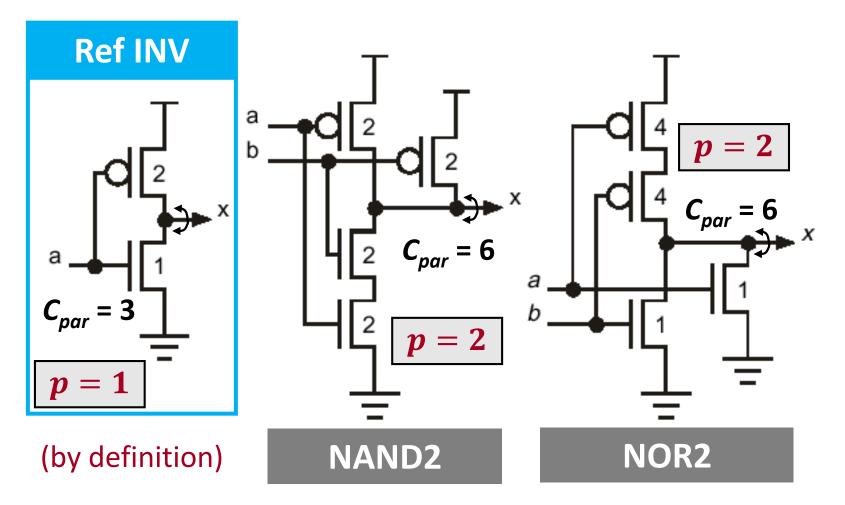


$$\Box \rightarrow C_{gate,NOR} = 14$$

$$g_{NOR}=rac{7}{4}$$

Example: Calculating Parasitic Delay

• Ratio of intrinsic cap at the gate output and intrinsic cap at the output of an equivalent inverter

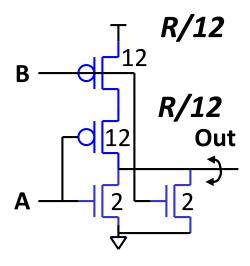


Example 4.1b: Parasitic Delay, NOR ($\beta = 3$)

Assumption:

$$\gamma = 0.5$$

2R/12 = R/6



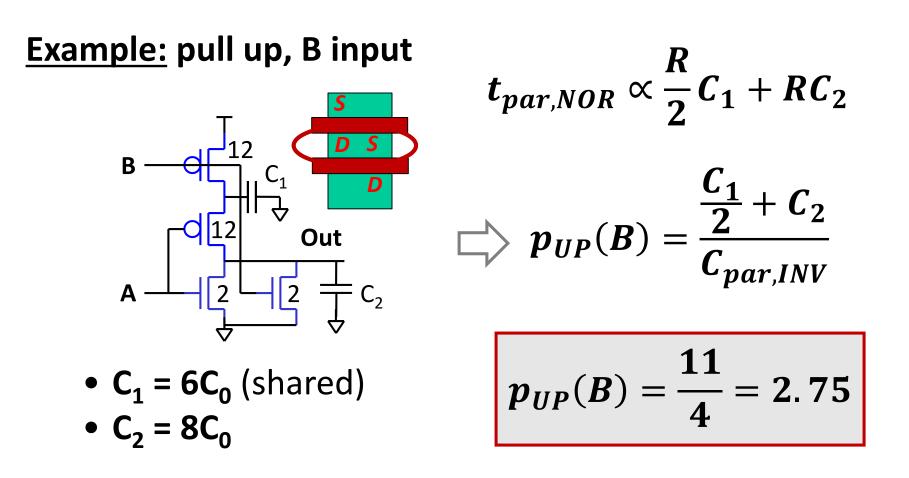
Equivalent INV
•
$$W_p: W_n = 6:2$$

• $C_{par,INV} = 8$
• $C_{par,NOR} = 16$

Example 4.1c: Intermediate Nodes? (p)

One way to account for them is to use an "effective" p

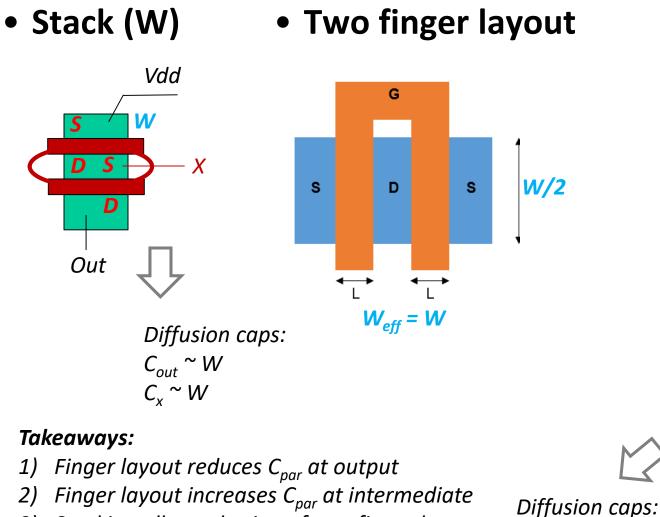
Input and transition dependent (lots of p's to track)



Diffusion Sharing: Stack vs. Finger Layout

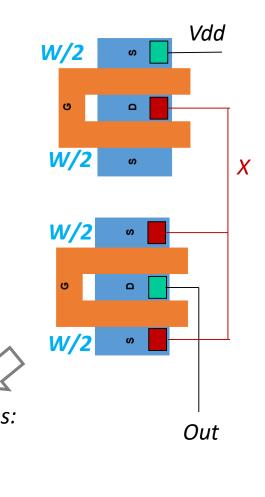
 $C_{out} \simeq W/2$

 $C_{v} \simeq 1.5 * W$

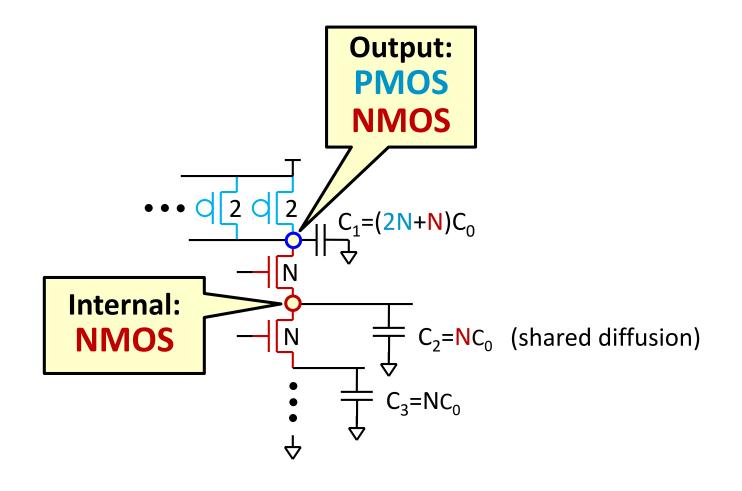


- 3) Stacking allows sharing of non-finger layout transistors and results in lower C_{par}
- 4) $R_{on} \sim 1/W$ and is not affected by D/S sharing

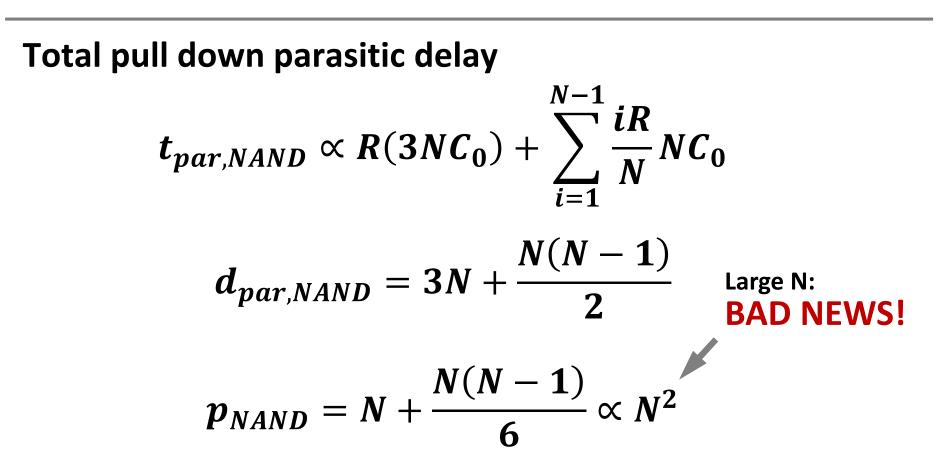
• Stack + finger layout



Generalize N-input NAND



Generalize N-input NAND



- Even worse for PMOS (NOR)
 - Reality is even worse since C_{GS} makes each intermediate node capacitance > NC₀

A Catalog of Gates

Gate type	g for different number of inputs					
	1	2	3	4	5	n
Inverter	1					
NAND		4/3	5/3	6/3	7/3	(n+2)/3
NOR		5/3	7/3	9/3	11/3	(2n+1)/3
Multiplexer		2	2	2	2	2
XOR, XNOR		4	12	32		

Assumptions:

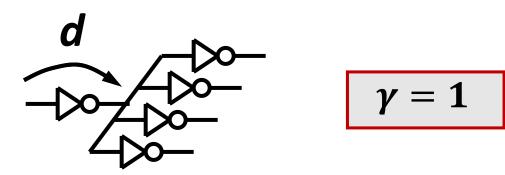
• β = k = 2

- Mux: tri-state INVs shorted together
- XOR: bundled in (a, a')

Gate type	Parasitic delay		
Inverter	1·γ		
n-input NAND	n·γ		
n-input NOR	n·γ		
n-way Multiplexer	2n·γ		
2-input XOR, XNOR	n2 ⁿ⁻¹ ·γ		

does not include intermediate nodes

Example 4.3: Fanout-of-4 Inverter Delay?



Logical Effort : g = 1 (by definition) Electrical Effort : $h = C_{out}/C_{in} = 4$ Parasitic Delay : p = 1 (by definition) Stage Delay : $d = g \cdot h + p \cdot \gamma = 5$

Logical Effort Recap

Normalized delay: $d = g \cdot h + p \cdot \gamma$

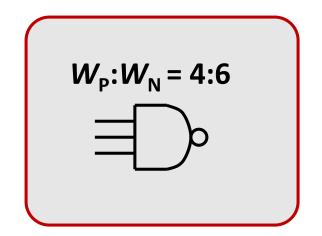
- $g = C_{in,gate}/C_{in,INV}$ is the logical effort
 - INV sized such that R_{INV} = R_{gate}
- h (= C_{out}/C_{in}) is the electrical effort (fanout)
 - g·h is the effort delay ("effective fanout")
- *p* (= C_{par,gate}/C_{par,inv}) is the parasitic effort
 - *p*·γ is the parasitic delay
- May have different g, p
 - Per input, and for pull-up/down

What About:

- Different inputs
- Reference inverter
- Asymmetry

A Side Note: Total Gate Effort (g_{tot})

Take total input capacitance: $g_{tot} = C_{in,tot}/C_{INV}$



Example: 3-in NAND

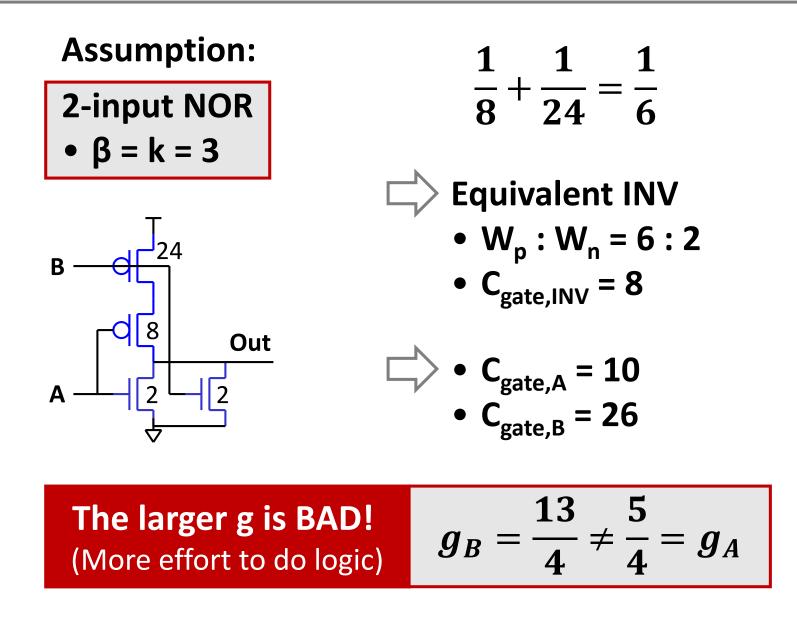
- Equivalent INV is 4:2
- **One in:** $g_{in} = 10/6 = 5/3$

- g_{tot} not very useful to calculate delay
 - But it is an indication of the "cost" of the gate
 - Can be useful in gate mapping (logic synthesis)
 - Which gate is best to use to map a given Boolean expression

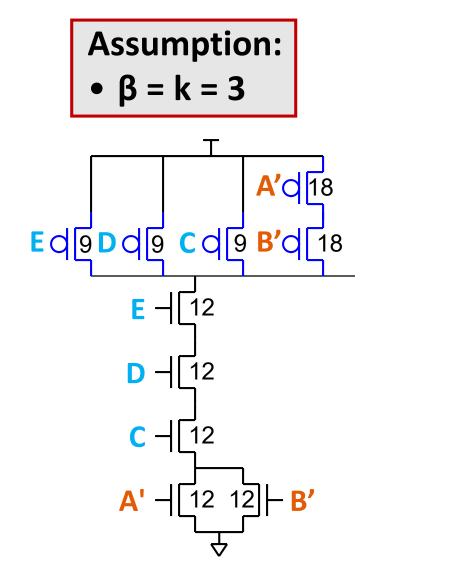
A Note on Asymmetry

- The gate examples so far have been symmetric
 - All inputs are essentially identical
 - P:N ratio is approximately equal to the mobility ratio
 - Same as the reference inverter
- Inputs of most gates are not symmetric
 - Different inputs may see different capacitances
 - Even series stacked gates may not be the same size
- Pull-up and pull-down is rarely equal resistance
 - Call this "skewed" gates

Asymmetric Example: Different Stack Sizing



Asymmetric Example: More Complex Gates



Equivalent INV

•
$$W_p : W_n = 9 : 3$$

NOT 6 : 2

$$g_{EDC} = \frac{21}{12} = \frac{7}{4}$$
$$g_{A'B'} = \frac{30}{12} = \frac{5}{2}$$

What is the Reference Inverter?

- The assumption of logical effort is that the reference inverter has equal rise and fall delays
- Practical case when pull-up and pull-down resistances are different (rising and falling delays not equal)
 - Similar to the parasitic delay calculation earlier

•
$$d_{\text{UP}} = g_{\text{UP}} \cdot h + p_{\text{UP}}$$

- $\boldsymbol{d}_{\text{DN}} = \boldsymbol{g}_{\text{DN}} \cdot \boldsymbol{h} + \boldsymbol{p}_{\text{DN}}$
- Since static CMOS gates are inverting, the transitions through subsequent gates must be alternating
 - Use an average logical effort (and parasitic effort)

•
$$g_{\text{AVG}} = (g_{\text{UP}} + g_{\text{DN}})/2$$

Gates with Skewed P:N Ratio

• Assume: β = 1.7, k = 3

Example: Inverter

- Pull-up: reference inverter is sized P:N of $W_P:W_P/k$
 - $g_{\text{UP}} = W_{\text{P}}(1+1/1.7)/W_{\text{P}}(1+1/k) = 1.19$
- Pull-down: reference inverter is sized P:N of kW_N : W_N
 - $g_{\rm DN} = W_{\rm N}(1+1.7)/W_{\rm N}(1+k) = 0.675$
- g_{AVG} = 0.93 (instead of 1)
 - Confirms that β should be < k for speed
 Reference INV not optimized for speed

NAND Gate with Skewed P:N Ratio

• Assume: β = 1.7, k = 3

Example: 2-input NAND Gate

- $g_{\text{UP}} = W_{\text{P}}(1+2/1.7)/W_{\text{P}}(1+1/\text{k}) = 1.63$
- $g_{\rm DN} = W_{\rm N}(2+1.7)/W_{\rm N}(1+k) = 0.925$
- g_{AVG} = 1.28 (instead of 5/4)

for
$$\beta = 3$$

Know Your Reference INV

R1 • Equal rise/fall time:
$$\beta = 3$$
, k = 3 g = 1

• Minimum delay: $\beta = 1.7$, k = 3 $g_{AVG} = 0.93$

Example: 2-input NAND

• $\beta = 1.7, k = 3$ • $g_{AVG} = 1.28$ ref R1 \checkmark different PU, PD • $\beta = 3, k = 3$ • g = 5/4 ref R1 \rightarrow but $\beta = 1.7$ should be min delay?

Know Your Reference INV

R1 • Equal rise/fall time:
$$\beta = 3$$
, k = 3 g = 1

R2 • Minimum delay: β = 1.7, k = 3 $g_{AVG} = 0.93$

Example: 2-input NAND

- β = 1.7, k = 3
 - g = 1.37 ref R2 x 0.93 = 1.28 ref R1

Translate b/w two reference INVs

Choosing a Reference Inverter

- The reference inverter can be any β
- Choose the reference × inverter β
 Use a normalization to adjust the g

Example: 2-input NAND

- $g_{\text{REF}} = 1$ with $\beta = 1.7$ (k = 3) • $g_{\text{REF}} = 1$ with $\beta = 1.7$ (k = 3) • $p_{\text{enalty for } \beta = 3}$
- $g_{AVG_{INV}(\beta=k)} = 1.16$ for $\beta = 3$
- NAND2 β = 1.7 has g = 1.37
- NAND2 β = 3 has g_{AVG} = 1.45 = 1.25 · 1.16

 g_{NAND} for $\beta = 3$ w.r.t. $\beta = 3$ INV

Velocity Saturation

- Need to account for the change in resistance
- Assume reference inverter is $W_p = 2W_n$

Example: 2-input NAND, $W_p=2$, $W_n=2$

- Assuming $R_{n_{nostack}} = (4/3)R_{n_{stack}}, R_{p_{nostack}} = (6/5)R_{p_{stack}}$
- The equivalent INV with same drive resistance
 - Pull-up: equiv inv = 2:1, g_{UP} = 4/3 (same as before)
 - Pull-down: equiv inv = 8/3:4/3, g_{DN} = 4/4 = 1
- Makes sense because v-sat allows the transition through the series stacking be faster (more current)

Multi-Stage Networks

Same Concept Applies at the Path Level

Stage effort :
$$f_i = g_i \cdot h_i$$

Path electrical effort : $H = C_{out} / C_{in}$

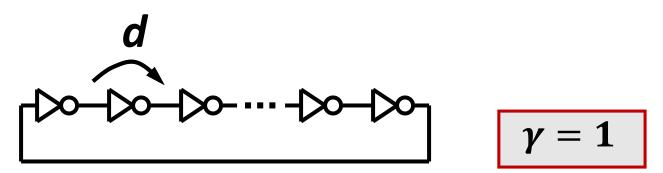
Path logical effort : $G = g_1 g_2 ... g_N$

Path effort : $F = G \cdot H$

Path delay :
$$D = \gamma_{INV} \sum_{i=1}^{N} p_i + \sum_{i=1}^{N} g_i h_i$$

Example 4.2: Ring Oscillator

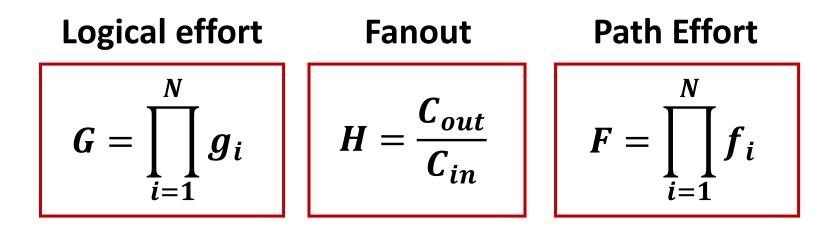
• Estimate the frequency of an *N*-stage ring oscillator:



Logical Effort : g = 1Electrical Effort : $h = C_{out}/C_{in} = 1$ Parasitic Delay : p = 1Stage Delay : $d = g \cdot h + p \cdot \gamma_{INV} = 2$ 1 1 1

OSC frequency : $f_{OSC} = \frac{1}{2Nd\tau} = \frac{1}{4N\tau}$

Total Effort for a Path

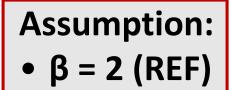


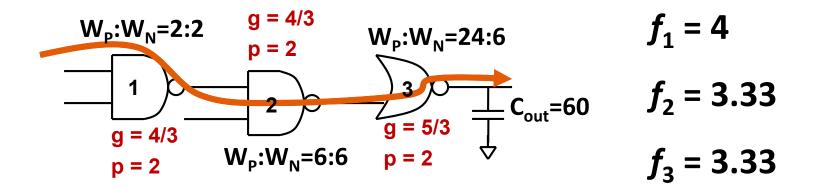
Treat the path as a single "gate"

Example 4.3a: Total Effort (G, H, F)?

Calculations:

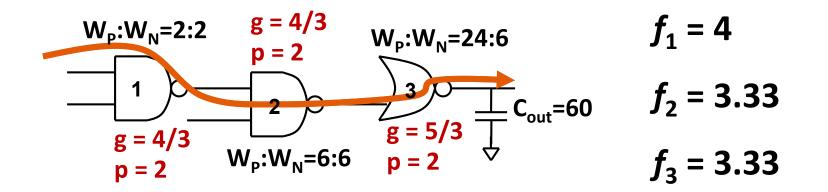
- $G = (4/3)^2(5/3) = 3$
- H = 60/4 = 15
- F = 45; F ?= GH (yes for this case)





Example 4.3a: Total Path Delay?

Assume:
$$\gamma = 1$$



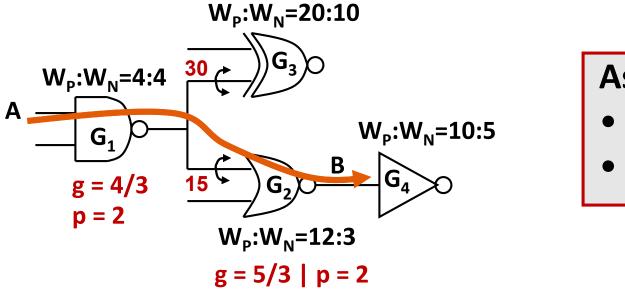
Delay of a multi-stage network = sum of stage delays

 $D_{\rm F}$ = 10.66, P = 6

D = 16.66 (τ delays)

Branching Effort

Example 4.4: Delay from A to B?



$$h_{1} = \frac{45}{8} = 5.625$$

$$h_{1} = \frac{45}{8} = 5.625$$

$$h_{2} = \frac{15}{15} = 1$$

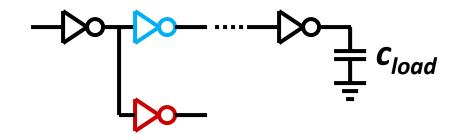
$$h_{1} = g_{1}n_{1}+p_{1} = 9.5$$

$$d_{1} = g_{2}h_{2}+p_{2} = 3.66$$

$$Delay = 13.16$$

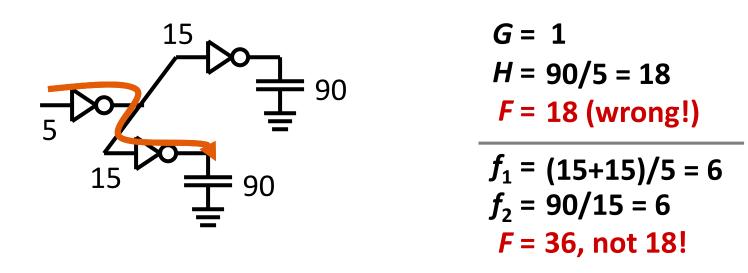
Add Branching Effort

- Ratio of total to on-path capacitance
 - How much more current is needed to supply on-path (given that some current "flows" off-path)



$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

Example 4.5: Path Effort F = ?



• Introduce new kind of effort to account for branching:

Branching Effort (BE)

Path BE

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

$$B = \prod_{i=1}^{N} b_i$$

Multistage Networks with Branching

Stage effort : $f_i = g_i \cdot h_i$

Path electrical effort : $H = C_{out}/C_{in}$

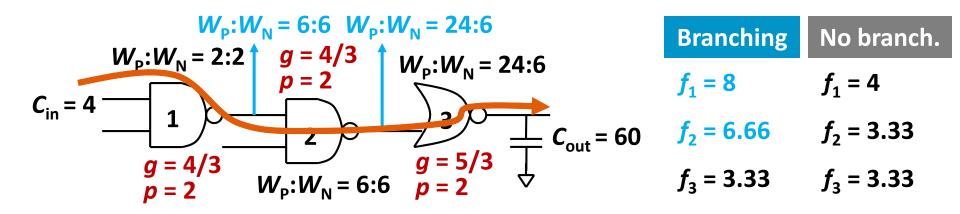
Path logical effort : $G = g_1 g_2 ... g_N$

Path branching effort : $B = b_1 b_2 \dots b_N$

Path effort : $F = G \cdot H \cdot B$

Path delay :
$$D = \gamma_{INV} \sum_{i=1}^{N} p_i + \sum_{i=1}^{N} g_i h_i$$

Example 4.6: Path Effort F = ?



Calculate F:

- $h_1 = (2 \cdot 12)/4 = 6$
- h₂ = (2·30)/12 = 5
- $h_3 = 2$
- $F = (4/3.6) \cdot (4/3.5) \cdot (5/3.2) = 177.8$

For circuits with branching:

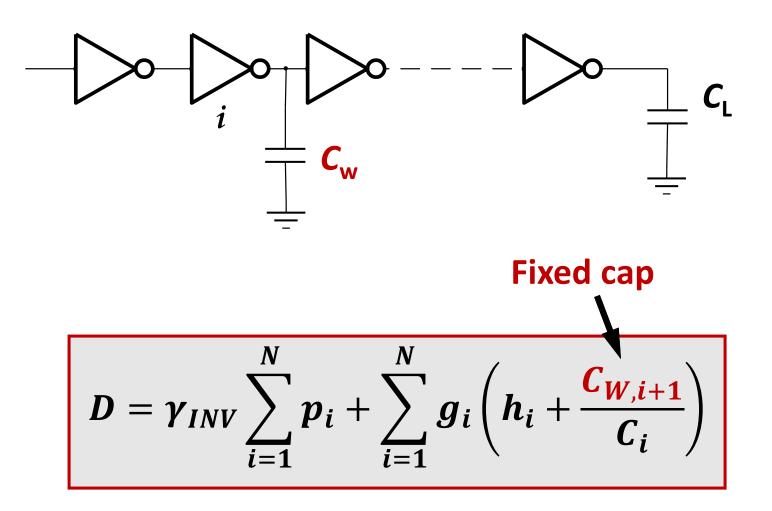
- G is the same = 3
- *H* is the same = 15

• F differs

What About Interconnects?

- C from wires are difficult to deal with
- Fixed load so intuitively increase fanout
- Short wires small parasitic capacitance
 - Treat them as increasing *p* for each gate
 Not exact but accounts for the effect
- Long wires large load capacitance
 - Size of driving gate is as if driving a large C
- Medium wires most difficult (C \approx gate load)
 - Delay as function of gate and wire cap
 - *N*th-order polynomial and differentiate
 - More realistic method is to iterate

Handling Wires & Fixed Loads



Logical Effort Delay Calculation: Summary

- Delay normalized by inverter delay, $d = g \cdot h + p \cdot \gamma_{INV}$
- g and p are characteristics of a logic gate that depends on its structure and does not depend on gate size
 - g's and p's depend on input and PU / PD
 - **Simplify:** use *g***_{AVG}**, ignore *C*'s of intermediate nodes
- Once a table of g's and p's are created for the catalog of gates, delay can be calculated quickly and easily
- Next we will look at how to size a network (instead of just analyzing it)

Gate Sizing Using Logical Effort

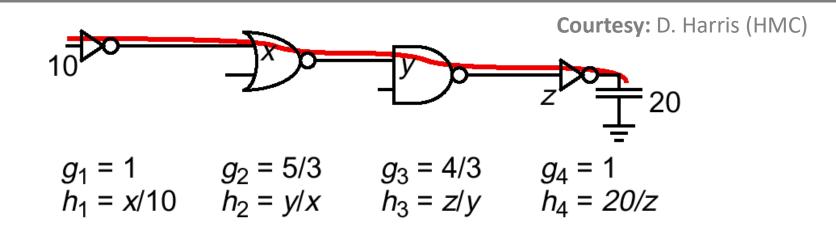
Optimum Effort per Stage

When each stage bears the same effort:

$$f^{N} = G \cdot B \cdot H = F$$
$$f = (F)^{\frac{1}{N}}$$

Minimum path delay : $D_{min} = N \cdot f + P$

Example 4.7: (x, y, z) for Min Delay?

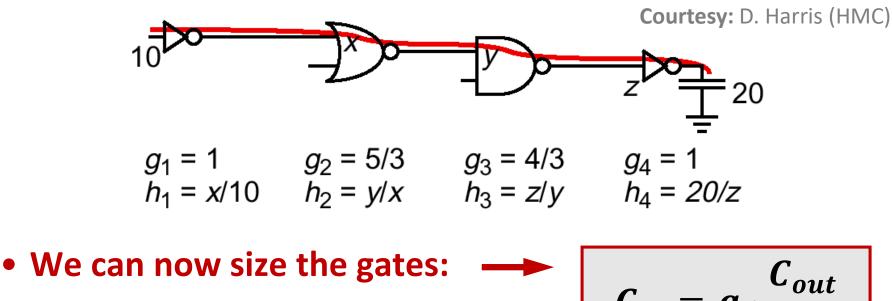


• First, compute path effort:

$$F = G \times H = \left(1 \cdot \frac{5}{3} \cdot \frac{4}{3} \cdot 1\right) \times \left(\frac{20}{10}\right) = \frac{40}{9}$$

• The optimal stage effort is: $f = g \cdot h = \left(\frac{40}{9}\right)^{\frac{1}{4}} = 1.45$

Example 4.7: (x, y, z) for Min Delay?



$$z = 1 \cdot \frac{20}{1.45} = 13.8$$
 $x = \frac{5}{3} \cdot \frac{y}{1.45} = 14.5$

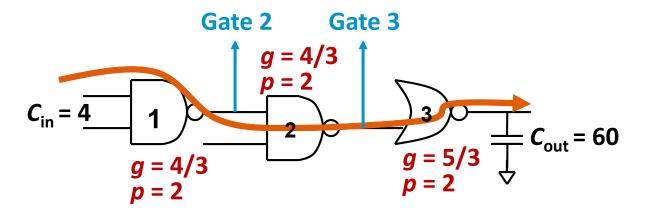
$$C_{in} = g \cdot \frac{C_{out}}{f}$$

$$y = \frac{4}{3} \cdot \frac{z}{1.45} = 12.7$$
 $C_{in} = 1 \cdot \frac{x}{1.45} = 10$ (sanity check)

Finally, calculate D_{min} (γ = 1):

 $D = 4 \cdot f + P = 4 \cdot 1.45 + 6 = 11.8$

Example 4.8: Min Delay? (Branching)



$$C_i = g_i \cdot \frac{b_i C_{i+1}}{f}$$

 $B = b_1 b_2 = 4$

$$F = 177.8, f_{opt} = 5.62$$

$$C_{in3} = 5/3*(1*60)/5.6 = 17.9$$

$$C_{in2} = 4/3*(b_2*17.9)/5.6 = 8.5$$

*
$$\frac{4}{5} = 14.3 = W_{p3}$$

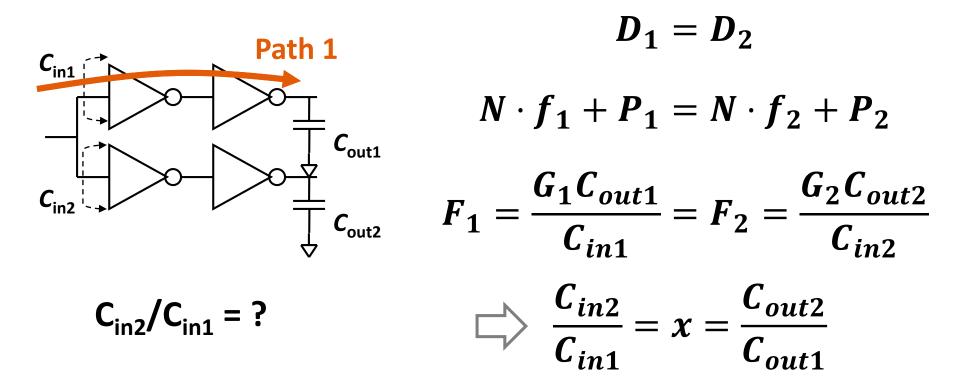
* $\frac{1}{2} = 4.25 = W_{p2}$

$$C_{in1} = 4/3*(b_1*8.5)/5.6 = 4$$

Branches: Same # Stages, Different Loads

- Optimal system has all paths with equal delay
- Branching for path 1, b₁ = 1 + x

• Assumption is that $P_1 \approx P_2$

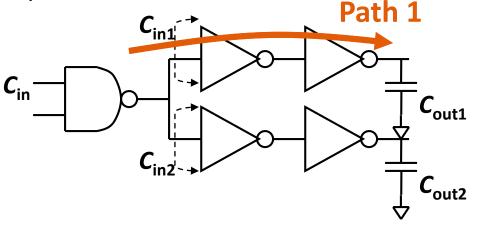


Path Effort Estimate

• With equal-stage branches, *H* can be estimated without knowing each stage's *b*

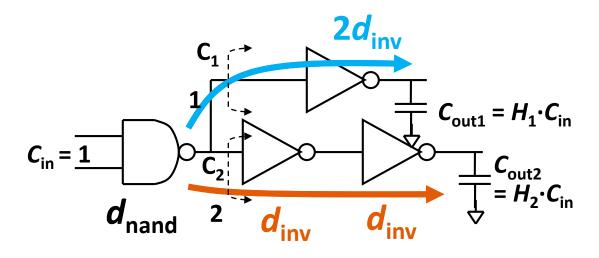
•
$$H = (C_{out1} + C_{out2})/C_{in}$$
 (with $B = 1$)

- Example for Path 1:
 - $G = g_{\text{NAND}}$
 - $H_1 = C_{out1} / C_{in}$
 - $B_1 = (1 + C_{out2} / C_{out1})$
 - $F = G \cdot H_1 \cdot B = g_{\text{NAND}} (C_{\text{out1}} + C_{\text{out2}}) / C_{\text{in}}$
 - Same as $F = G \cdot H$
- Error if different G and P in the two paths



Unequal-Length Branches (Not Easy)

• f_{opt} differs between two paths



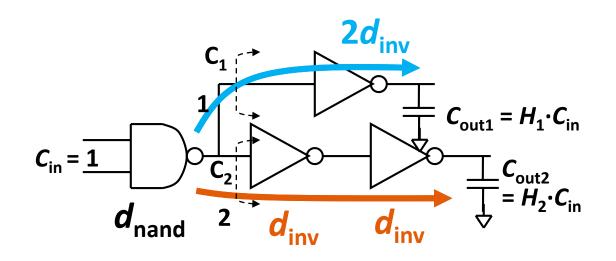
Solving precisely, example:

- $2d_{inv} p = C_{out1}/C_1$
- $(d_{inv} p)^2 = C_{out2}/C_2$
- $d_{\text{nand}} = g_{\text{nand}}(C_1 + C_2)/C_{\text{in}}$

• $C_1 = C_{out1} / (2d_{inv} - p)$

•
$$C_2 = C_{out2} / (d_{inv} - p)^2$$

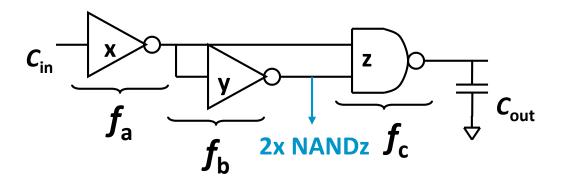
Unequal-Length Branches (Not Easy)



- $D = g_{\text{nand}}(C_{\text{out1}}/(2d_{\text{inv}} p) + C_{\text{out2}}/(d_{\text{inv}} p)^2) + 2d_{\text{inv}}$
- Take partial derivative of $\partial D/\partial (d_{inv})$
- Not easy so ignore p to simplify
 - If $g_{NAND} = 4/3$, $H_1 = H_2 = 3 : d_{nand} = 2.35$, $d_{inv} = 1.80$
 - The per stage f = g·h (no p) is different per stage
- Most branches are relatively long or not critical path

Re-convergent Paths

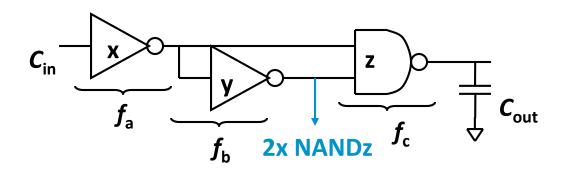
- Recombined branches add complexity to logical effort
 - Typically constrains the sizing problem



Example: ignore parasitics. Let x = C_{in} = 1

- **f**_a = **y**+**z** (x = 1)
- $f_b = 3z/y$
- $f_c = g_{NAND}C_{out}/z$ 2 variables

Re-convergent Paths

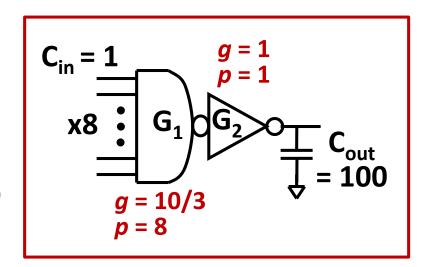


$$y+z = 3z/y = g_{NAND}C_{out}/z$$

- Constrain with $f_a = f_b = f_c$
- 2 variables, 2 equations (directly solve)
 - Any constraints are possible
- Increase variables by introducing more buffering (parallel to y)

Example 4.9: Logic Optimization Example

- Symmetric 8-input AND ($\beta = k = 2, 3W_0$ is unit C)
- Logical effort
 - *G* = 10/3, *B* = 1, *H* = 100
 - *F* = 333.3
 - For 2 stages, f_{opt} = 18.3
 h₂ = 18.3, C_{in2} = 5.5, W_P = 11W₀
 - $h_1 = 5.5, C_{in1} = 1, W_P = 0.6W_0$
 - Delay = 36.6 + 9 = 45.6

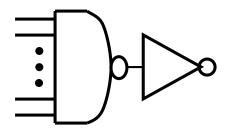


Buffering

- For 3 stages, $f_{opt} = 7$ (1 extra inverter), *Delay* = 31
- For 4 stages, $f_{opt} = 4.3$ (2 extra inverters), **Delay = 28.2**
- For 5 stages, $f_{opt} = 3.19$ (closer to 3.6), *Delay*=28
- For 6 stages, $f_{opt} = 2.63$ (below 3.6), *Delay*=28.8

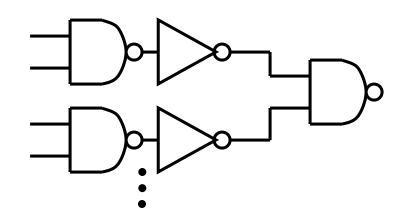
Example 4.9: Other Implementations

 Many ways to implement this same function



- Use a tree of fewer input AND gates
 - (A₀A₁)(A₂A₃)...
 - If multiple ANDs

 (as in a mem decoder),
 then partial results
 can be shared

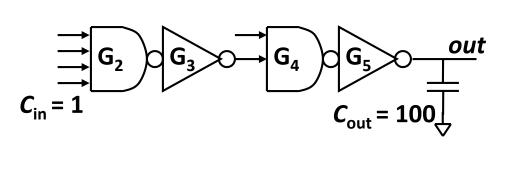


Example 4.9: 2-input Implementation



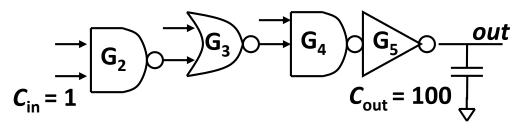
- $F = G \cdot B \cdot H = 4/3^3 \cdot 100 = 235$
- *f*_{opt} = 2.48 (too small)
- $D = 6 \cdot 2.48 + 3 \cdot 2 + 3 \cdot 1 = 14.88 + 9 = 23.88$
 - Still better than 8-input NAND
- Optimal sizing
 - $G_7: C_{in7} = 100g_{inv}/f = 40, W_p = 80W_0$ • $G_6: C_{in6} = C_{in7}g_{nand}/f = 21.5, W_p = 32W_0$ • $G_5: C_{in5} = C_{in6}g_{inv}/f = 8.7, W_p = 17.4W_0$ • $G_4: C_{in4} = C_{in5}g_{nand}/f = 4.7, W_p = 7W_0$ • $G_3: C_{in3} = C_{in4}g_{inv}/f = 1.88, W_p = 3.8W_0$ • Double check $G_2: C_{in} = g_{nand}C_{in3}/f = 1, W_p = 1.5W_0$

Example 4.9: 4-input Implementation



- $F = B \cdot G \cdot H = 4/3 \cdot 6/3 \cdot 100 = 266$
- **f**_{opt} = **4.04** (a tad high)
- $D = 4 \cdot 4.04 + 1 \cdot 4 + 1 \cdot 2 + 2 \cdot 1 = 16 \dots 16 + 8 = 24.16$
 - Slightly worse than 2-input! Due to self-loading
- Optimal sizing
 - $G_5: C_{in5} = 100g_{inv}/f = 24.75, W_P = 50W_0$
 - $G_4: C_{in4} = C_{in5}g_{nand}/f = 8.16, W_P = 12.5W_0$
 - $G_3: C_{in3} = C_{in4}g_{inv}/f = 2.02, W_P = 4W_0$
 - Double check G_2 : $C_{in} = g_{nand4}C_{in3}/f = 1$, $W_P = 1.0W_0$

Example 4.9: 2-NOR Implementation



- $F = BGH = 4/3^{2*}5/3^{*}100 = 296$
- **f**_{opt} = **4.14** (a tad high)
- D = 4.4.14 + 3.2 + 1.1 = 16.56 + 7 = 23.6 (Best one!)
- Optimal sizing

•
$$G_5: C_{in5} = 100g_{inv}/f = 24.1, W_p = 48W_0$$

- $G_4: C_{in4} = C_{in5}g_{nand}/f = 7.76, W_p = 11.6W_0$
- $G_3: C_{in3} = C_{in4}g_{nor}/f = 3.125, W_p = 7.5W_0$
- Double check G_2 : $C_{in} = g_{nand}C_{in3}/f = 1$, $W_p = 1.5W_0$
- Lesson: use close to optimal *f*, use gates with small *p*

Logical Effort "Design Flow" (Min Delay)

- Compute the path effort: **F** = **G** · **B** · **H**
- Find the best number of stages: N_{opt} ~ log₄(F)
- Compute the stage effort: $f = (F)^{1/N}$
- Working from either end, determine gate sizes:

$$C_i = g_i \cdot \frac{b_i C_{i+1}}{f}$$

Reference: Sutherland, Sproul, Harris, "Logical Effort," (Morgan-Kaufmann 1999)

Summary of LE Design Methodology

- **1.** Buffer non-critical paths with minimum-sized gates
 - Minimize loading on critical path
 - Simplifies sizing of non-critical path
- 2. Estimate total effort along each path (without branching)
- 3. Verify that the number of stages is appropriate
 - Add inverters if $f_{opt} > 5$
- 4. Assign branch ratio of each branch
 - Estimate based on the ratio of the effort of the paths
 - Ignore paths that have little effect (i.e. min-sized)
 - Include wire capacitances
- 5. Compute delays for the design (include parasitic delay)
 - Adjust branching ratios (especially with C_{wire})
 - Repeat if necessary until delay meets specification
- 6. Re-optimize logic network if f_{opt} is small (Return to step 3)