lecture

4 Logical Effort

ECE M216A

Prof. Dejan Markovié
ee2l6a@gmail.com



Concept of Logical Effort

Instead of running lots of simulations
e Simplified calculation of delay

DEIay X Rgate(cload T cself) = Rgatecload T Rgatecself
e Normalize to a technology time constant, t

Logical effort delay equation (D = d-1):

AP

Normalized Effort Parasitic
delay delay delay

4.2



The Logical Effort Way of Thinking

e Gate delay we used until now:

Delay = 0.69R j4te(Cpar + Cour)

e Another way to write this formula:

Cpar Cout )

_|_

Delay = 0.69 R ;,:.Ciy gate (C- C.
in,gate in,gate

+
Cin, gate Cin,gate

C C
Delay = 0.69 7, ( P out )

4.3



Now Normalize the Delay

Strategy: normalize to the time constant of an inverter

1 * Method 1: normalize to 7,y = Ry Ciy vy

Delay 7gjate Cout
- Ygate + C
TINY TINV in,gate

2 + Method 2: normalize to Tpoinv = RinvCpariny

Delay . rgate Cout
t - Ygate + C
pO,INV  Tpo,INV in,gate

4.4



We Will Use Method 1

Normalize to the time constant of an inverter

Tiny = RynyC in,INV

Delay . Tgate Cout
T yy ate + C
TINY TINY in,gate

e Used in the original logical effort theory

e Doesn’t really matter: just a constant

4.5



Normalized Delay

Delay Tgate Cout
=d = Y gate + C
TINV TINV in,gate

v

Normalized delay: d = g (Y gaze + h)

v

Evensimpler:(| d=9g h+p- -y

7 T X

Logical Fanout Parasitic
effort effort

4.6



Logical Effort Terms: Mathematical View

Logical effort m Parasitic effort

g:

Delay Tgate (
TNy TNy gate ~ ¢

Rgate ' Cin,gate

h Cout

Rinv * Cininy

Cin,gate

p:

Cout )
in,gate

Cpar, gate

Cpar,IN V

4.7



Logical Effort (g): Intuitive View

Rgate ' Cin,gate

g —
Rinv - Cininy

1. R,, ratio for equal C;,

2 o C., ratio for equal R,



Logical Effort (g): Intuitive View

Rgate ' Cin,gate

g:

Rinv - Cininy

1. R,, ratio for equal C;,

2 o C.. ratio for equal R,

Cost of doing logic

4.9



g is NOT a Function of Gate Size

e Unitless inherent characteristic of the gate

e A function of the construction of the gate
(topology and relative size of transistors)

e The cost of implementing the function

4.10



Fanout (h)

Ratio of gate caps (only)

Diffusion counts in the p term

4.11



Parasitic Effort (p): Intuitive View

P =

YINV

Note: parasiticdelay=p -y

p:

Cpar,gate

Cpar,l NV

Ratio of parasitic caps

( assuming equal R,

YQate ﬂcm gate Cpar gate Cin,INV

Ucm INV

m ,gate

Cpar,l NV

Cpar, gate

Cpar,IN V

4.12



Computing Logical Effort: g

. Choose an input, find total device with of that input

.| Find W of a single device that has equivalent drive
strength as the gate’s pull-up of that input

.| For a reference INV (given ) and W, from Step 2,
find the total gate widths of the inverter devices

.| Divide Step 2 by Step 3 to determine g,

. Repeat Steps 2-4 for pull-down for g,

[Under what B is g, = 84own?]

4.13



Example: Calculating Logical Effort

e Ratio of the gate input cap to the input cap of an
equal-strength (same output current) inverter

Ref INV — _
C.=4

in
E-eoqz
5 — —qz

4

D o

a 1 2 |
_ ol — 4| ¢Ce 1
Cin_3 = — I
L —[2 |97 3] *—[s
- Cin =3 =3
g=1

0 N vor:

4.14



Logical Effort, NOR (3 = 3)

Assumption:
2-input NOR f‘> Equivalent INV
oB:k=3 .Wp:Wn=6:2
° Cgate,INV =8
B d'[lz jl> ° Cgate,NOR =14
O iz Out -
AL _12 gz 9NOR — 1

4.15



Example: Calculating Parasitic Delay

e Ratio of intrinsic cap at the gate output and intrinsic cap
at the output of an equivalent inverter

Ref INV - _
T a
14

2
] X X
1 -
- L

C,=3 | b l
pa 1 |2 p=2 40—|1

p=1 )

I S

(by definition)

4.16



Assumption:

Yy =0.5

2R/12 =R/6

12

B —¢
_C

[ | = 1 :

R/12

R/12

Out
«

>
<}|:/I:L
N

)

Parasitic Delay, NOR (B = 3)

f‘> Equivalent INV
*W,:W =6:2

% R/6
* Coarainv =8 £ T
!
jl> ° cpar,NOR = 16

PNoR = 2

4.17



Intermediate Nodes? (p)

One way to account for them is to use an “effective” p
e Input and transition dependent (lots of p’s to track)

Example: pull up, B input
12
Cl

R
1 tpar,NOR “561 + RC,
Es by C>

’|  out f‘> pyp(B) = 2

Cpar,l NV

B —¢
_C

[ | = I_—I :

>
<}|:/I:L
N

[

11
e C, =6C, (shared) pyp(B) =—=2.75
e C, = 8C, 4

4.18



Diffusion Sharing: Stack vs. Finger Layout

e Stack (W)
vdd

w

Out ! !

Diffusion caps:
COUt ~ W

C,~W

W= W

Takeaways:

1) Finger layout reduces C,,, at output

2) Finger layout increases C,,, at intermediate

3) Stacking allows sharing of non-finger layout
transistors and results in lower C,,,

4) R,,~ 1/W and is not affected by D/S sharing

[

e Two finger layout e Stack + finger

layout

vdd
w/2

w/2

.

w/2 X

w/2

/2
QW

Diffusion caps:
C,.c~W/2
C, ~1.5*W

Out

4.19



Generalize N-input NAND

Output:
PMOS
NMOS
ol
OIiZ A2 /¢ ~onanc
S
Internal: -0
NMOS —|N -—I_ C,=NC, (shared diffusion)

v

4.20



Generalize N-input NAND

Total pull down parasitic delay
N-1

IR
tparNanp < R(BNCyp) + z ~ NCo
i=1
N(N — 1)

d NAND — 3N + Large N:
par 2 BAD NEWS!

_ ¥
N(N6 D

e Even worse for PMOS (NOR)

= Reality is even worse since C. makes each
intermediate node capacitance > NC,

Pnanp = N +

4.21



A Catalog of Gates

g for different numober of INPUES™ | WX 1o lale] 1 TR

° B =k=2
e Mux: tri-state

(n+2)/3 | INVs shorted

(2n+1)/3| together

2 e XOR: bundled

Gate type
Inverter 1
NAND 4/3 | 5/3 | 6/3 | 7/3
NOR 5/3|17/319/3|11/3
Multiplexer 2 2 2 2
XOR, XNOR 4 12 | 32

in (a, a’)

Gate type Parasitic delay A

Inverter 1-y
n-input NAND n-y
n-input NOR n-y
n-way Multiplexer 2n-y
2-input XOR, XNOR n2"ly

does not include
> intermediate
nodes

4.22



Fanout-of-4 Inverter Delay?

y=1

Logical Effort: g= 1 (by definition)
Electrical Effort: h= C_,/C, =4
Parasitic Delay: p= 1 (by definition)

Stage Delay: d= g-h+p-y=5

4.23



Logical Effort Recap

Normalized delay: d = g:h + p-y
* g (= G, gate/ Cin nv) is the logical effort
" INV sized such that Ry, = R,
e h(=C,,/C.,) is the electrical effort (fanout)
= g-h is the effort delay (“effective fanout”)
* p (= C,, cate/ Coar,inv) is the parasitic effort
= p-y is the parasitic delay

e May have different g, p
= Per input, and for pull-up/down

4.24



What About:

e Different inputs
e Reference inverter

e Asymmetry

4.25



A Side Note: Total Gate Effort (g,,,)

Take total input capacitance: g, , = Cin,tot/ Cinv

Example: 3-in NAND
e Equivalent INV is 4:2

— P e Onein: g, =10/6 =5/3
e Total: g, =30/6=5

e g..: hot very useful to calculate delay
= But it is an indication of the “cost” of the gate

= Can be useful in gate mapping (logic synthesis)
* Which gate is best to use to map a given Boolean expression

4.26



A Note on Asymmetry

e The gate examples so far have been symmetric
= All inputs are essentially identical

= P:N ratio is approximately equal to the mobility ratio
* Same as the reference inverter

e Inputs of most gates are not symmetric
= Different inputs may see different capacitances
= Even series stacked gates may not be the same size

e Pull-up and pull-down is rarely equal resistance
= Call this “skewed” gates

4.27



Asymmetric Example: Different Stack Sizing

Assumption: 1 1 1
2-input NOR sT21" ¢
J B =k=3
_ f‘> Equivalent INV
B a2 *W,: W =6:2
| * cgate,INV =8
8 Out
A B !2 jl> ° Cgate,A =10
° Cgate,B = 26
The larger g is BAD! 13 L E 3
(More effort to do logic) 9B = 4 7 4 ga

4.28



Asymmetric Example: More Complex Gates

Assumption:

e B=k=3 Equivalent INV

'Wp:Wn=9:3

+ o C =12
A 58 gate,INV \

CI NOT6:2
EdloDd[e cd[e B'd[18
80 c
o | 21 7
b 412 gEDC—E—Z
- 30 5
A'-[12 12)}-B’

4.29



What is the Reference Inverter?

e The assumption of logical effort is that the reference
inverter has equal rise and fall delays

e Practical case when pull-up and pull-down resistances
are different (rising and falling delays not equal)

= Similar to the parasitic delay calculation earlier

* dyp=gyph + pyp
* dpy = gpnh + Ppy

e Since static CMOS gates are inverting, the transitions
through subsequent gates must be alternating

= Use an average logical effort (and parasitic effort)
® Gave = (9up + gpn)/2

4.30



Gates with Skewed P:N Ratio

e Assume: =1.7, k=3

Example: Inverter

e Pull-up: reference inverter is sized P:N of W,:W,/k
"Jup ™~ Wp(1+1/1-7)/Wp(1+1/k) =1.19

e Pull-down: reference inverter is sized P:N of kW, :W,
" gpn = Wi (1+1.7)/ W, (1+k) = 0.675

® gnyvg = 0.93 (instead of 1)

= Confirms that B should be < k for speed
Reference INV not optimized for speed

4.31



NAND Gate with Skewed P:N Ratio

e Assume:B3=1.7, k=3

Example: 2-input NAND Gate

* gup = Wp(142/1.7)/W,(1+1/k) = 1.63
e gpn= Wy (2+1.7)/W (1+k) = 0.925

* g,vc = 1.28 (instead of 5/4)

\

for=3

4.32



Know Your Reference INV

R1 e Equal rise/fall time: B=3,k=3 g=1

e Minimumdelay: =1.7, k=3 gavg = 0.93

Example: 2-input NAND
e B3=17,k=3
" 8 =128  ref R1 —=— different PU, PD

.B=3Ik=3 1.25<1.28
but B = 1.7 should
ref R1

*8=5/4 be min delay?

4.33



Know Your Reference INV

R1 e Equal rise/fall time: B=3,k=3 g=1

R2 ¢ Minimum delay: B =1.7, k=3 gavg = 0.93

Example: 2-input NAND
e $3=17,k=3
= g=1.37 refFR2 x 0.93=1.28 ref R1

Translate b/w two reference INVs

4.34



Choosing a Reference Inverter

e The reference inverter can be any 8

e Choose the reference x inverter 3
Use a normalization to adjust the g

Example: 2-input NAND

* geer= 1 with B =1.7 (k = 3) Captures speed
* Gnvovip-g = 116 for p=3 4~ PenaviorB=3
e NAND2 3 =1.7 has g =1.37

* NAND2 3 =3 has g,,c =1.45=1.25-1.16

A

gnanp for B =3 w.r.t. B =3 INV

4.35



Velocity Saturation

 Need to account for the change in resistance
* Assume reference inverter is W, =2W,

Example: 2-input NAND, W =2, W =2
° Assuming Rn_nostack=(4/3)Rn_stack' Rp_nostack=(6/5)R
e The equivalent INV with same drive resistance

* Pull-up: equiv inv = 2:1, g,,, = 4/3 (same as before)

* Pull-down: equiv inv = 8/3:4/3, g,y=4/4=1

p_stack

e Makes sense because v-sat allows the transition through
the series stacking be faster (more current)

4.36



Multi-Stage
Networks



Same Concept Applies at the Path Level

Stage effort : f.=g;h,

" Path electrical effort : H = Cout/Cis,

Path logical effort: G =g,9,...9,

.

Path effort: F=G-H

N N
Pathdelay: D =y;ny ) Pi + 2 gih;
i=1 i=1

4.38



Ring Oscillator

e Estimate the frequency of an N-stage ring oscillator:

d
X

Podo—po-- ooy

Logical Effort: g= 1
Electrical Effort: h= C,,/C, =1
Parasitic Delay: p= 1
Stage Delay: d= g-h+p-y,, =2
- 1 7

0SC frequency : fosc = INdT 4Nt

.

4.39



Total Effort for a Path

Logical effort Fanout Path Effort
N C N
out
Gzl_[gi H = le_[fi
b in L
i=1 i=1

Treat the path as a single “gate”

4.40



Total Effort (G, H, F)?

Calculations: -

Assumption:
e G=(4/3)*(5/3)=3 e B =2 (REF)
e H=60/4 =15

e F=45; F?=GH
(yes for this case)

4.41



Total Path Delay?

Assume:y=1

f,=3.33
f,=3.33

Delay of a multi-stage network = sum of stage delays

D, =10.66, P =6

D = 16.66 (Tt delays)

4.42



Branching
Effort



Delay from A to B?

W,:W,=20:10
W,: W =4:4 31(_>EO Assume:
. . eB=k=2
ey=1

ed,=g,h;+p,; =9.5
hi{ = —=>5.625 @ e d,=g,h,+p, = 3.66

h,=—=1 [ Delay = 13.16 ]

4.44



Add Branching Effort

e Ratio of total to on-path capacitance

= How much more current is needed to supply on-path
(given that some current “flows” off-path)

:l: Cload
>o— '

h— Con—path + Coff—path

Con—path

4.45



Path Effort F="?

G=1
H=90/5=18
F =18 (wrong!)

fi=(15+15)/5 =6
f,=90/15=6
F = 36, not 18!

e Introduce new kind of effort to account for branching:

Branching Effort (BE) Path BE

N
p = Con—path T Coff—path _> B — 1_[ bi
Con—path i—1

4.46



Multistage Networks with Branching

Stage effort : f.=g;h,
Path electrical effort: H=C_,./C.,

Path logical effort: G =g,9,...9,

Path branching effort: B =b,b,...b,

Path effort: F=G-H-B

N N
Pathdelay: D = YINVZ P; + Z gihi
i=1 i=1

4.47



Path Effort F="?

W,:W,=6:6 W,:W,=24:6 m
N Branchlng
21 9=4/3 | w.w, =246
p=2 =8 fi=
Cin =4

1 c =60 f2 -6.66  f,=3.33

out

g i ‘2" 3 W,:W, = 6:6 2 _ 3/3 ;=333  f;=3.33
For circuits with branching:
Calculate F: * Gisthesame =3
=(2-12)/4=6 e His the same =15
=(2-30)/12 =5 o Fdiffers
o h.=2

3
* F=(4/3-6) - (4/3-5) - (5/3-2) = 177.8 m

4.48



What About Interconnects?

C from wires are difficult to deal with
Fixed load so intuitively increase fanout

Short wires — small parasitic capacitance

= Treat them as increasing p for each gate
* Not exact but accounts for the effect

Long wires — large load capacitance
= Size of driving gate is as if driving a large C
Medium wires — most difficult (C =~ gate load)

= Delay as function of gate and wire cap
» Nth-order polynomial and differentiate

= More realistic method is to iterate

4.49



Handling Wires & Fixed Loads

1

D D D

Fixed cap

CW 1
D = YINVEP:"‘EH:( l+>

4.50



Logical Effort Delay Calculation: Summary

e Delay normalized by inverter delay, d = g-h + p-y,\,

e g and p are characteristics of a logic gate that depends
on its structure and does not depend on gate size
= g’s and p’s depend on input and PU / PD
= Simplify: use g,,¢, ignore C’s of intermediate nodes

e Once a table of g’s and p’s are created for the catalog
of gates, delay can be calculated quickly and easily

e Next we will look at how to size a network
(instead of just analyzing it)

4.51



Gate Sizing
Using Logical Effort



Optimum Effort per Stage

When each stage bears the same effort:
fN=G-B-H=F
1
f=(F)N

Stage FO

Complex gates should

drive smaller load

Minimum pathdelay: D_,;, =N-f+ P

4.53



(x, y, z) for Min Delay?

g1=1 92=5/13 gz3=4/3 g4
h1 = x/10 h2=y/X h3=Z/y h4

e First, compute path effort:
F=GXH = 1541><20 _ 20
B ~\" 33 10/ 9

e The optimal stage effort is: 1
40\4
f =0 h = ? = 1.45

4.54



(x, y, z) for Min Delay?

Courtesy: D. Harris (HMC)
1%
- ™ =

20

g1=1 92=53 g3=4/3 g4=
h1 = x/10 h2=y/X h3=Z/y h4=20/Z

e We can now size the gates: =——p

C.. = Cout
—1--2 _13.8 5 s | 9
= 145~ *=3'145° T
4 Z X .
—_. — .. =1.-—— =10 (sanity check
y 3 145 12.7 Cm 1.45 ( Yy )

e Finally, calculate D_;_(y = 1):
D=4-f+P=4-1.45+6=11.8

4.55



Min Delay? (Branching)

° B =2
° CinZ' cin3 = ?

B=b1b2=4 Ci_gi f

F=177.8,f,, = 5.62

Ci3=5/3*(1%60)/5.6 =17.9 —> *4/5=14.3 = W,
C.,=4/3*%b,*17.9)/5.6 =8.5 = %1, =425 = W,
C.,=4/3*(b,*8.5)/5.6 = 4

4.56



Branches: Same # Stages, Different Loads

e Optimal system has all paths with equal delay
e Branching for path 1, b, =1+ x
= Assumption is that P, = P,

C. o> Path 1 D1 =D
iw _-_ N'f1+P1=N'fz+P2
_.’+ Coutl
i ><F><>;[ G1C G,C
Cois Tcouu Fl _ 1%outl _ FZ _ 2% out?2
Cin1 Cin2
Cin2/Cin1 =7 |:> Cin2 — x = Cout2

Cinl Coutl

4.57



Path Effort Estimate

e With equal-stage branches, H can be estimated
without knowing each stage’s b
" H= (Cout1+Cout2)/Cin (Wlth B = 1)

C . Path 1
inl
e Example for Path 1: C _}g
m— ' Coutl
* G = gnanp 5 >07><>;,27
L H = C /C Cinz:~->
1 outl/ ~in Icoutz
- Bl = (1+Cout2/Cout1)

* F=G-H;'B = gyano(Cout1tCou2)/Gin
= Same as F=G-H

e Error if different G and P in the two paths

4.58



Unequal-Length Branches (Not Easy)

. fopt differs between two paths

d

nand 2 d. dmv

Solving precisely, example:
* 2d,,, - p = Coui/Cy

e (d;, — P)*= Couia/ G,

® d\and = GnanalC1 + G)/ G,

° (= Cout1/(2dinv - p)
° CZ = CoutZ/(dinv - p)Z

4.59



Unequal-Length Branches (Not Easy)

a1 = Hp°G

in

[ C

—L_*out2

g g LG

e D= gnand(coutll(Zdinv - p) + CoutZ /(dinv - p)Z) + ZdinV
e Take partial derivative of 0D/9(d.,)

nand

e Not easy so ignore p to simplify
* If gyanp =4/3,H,=H,=3:d_,.4=2.35,d.,=1.80
= The per stage f = g-h (no p) is different per stage

e Most branches are relatively long or not critical path

4.60



Re-convergent Paths

e Recombined branches add complexity to logical effort
= Typically constrains the sizing problem

C?_, y s P

e —
Cout

fo —

fb 2xXx NANDz fc

Example: ignore parasitics. Letx=C,_ =1
ef . =y+z (x=1)
o f, =3zfy

¢ fc = gNANDcout/ £ 2 variables

4.61



Re-convergent Paths

e
| — y —_—
| — C
f I out
f, 2xNANDz °°

y+2 = 32/y = 8nanoCout/2

e Constrain withf,=f_ =1
e 2 variables, 2 equations (directly solve)
= Any constraints are possible

e Increase variables by introducing more buffering
(parallel to y)

4.62



Logic Optimization Example

e Symmetric 8-input AND (B =k =2, 3W, is unit C)
e Logical effort
= G=10/3,B=1,H=100
= F=333.3
" For 2 stages, f, ;= 18.3
* h,=183,C,,=5.5 W,=11W,
*h,=55,C,=1, W,=0.6W,
* Delay=36.6+9=45.6
= Buffering

* For 3 stages, f,,. = 7 (1 extra inverter), Delay = 31

* For 4 stages, f, . = 4.3 (2 extra inverters), Delay = 28.2
* For 5 stages, f,,, = 3.19 (closer to 3.6), Delay=28

* For 6 stages, f,,. = 2.63 (below 3.6), Delay=28.8

4.63



Other Implementations

e Many ways to implement
this same function

e Use a tree of fewer input AND gates
= (ALA)(AA;)...

= [f multiple ANDs —]
(asin a mem decoder),

then partial results Do_>o_ )D

can be shared

4.64



2-input Implementation
Lo RS e RS o

Cin=1 C,,.= 100

F=G-B-H=4/33-100 = 235

fopt = 2.48 (too small)
D=6-248+3-2+3-1=14.88 +9 = 23.88
= Still better than 8-input NAND

e Optimal sizing
* Gj: G,y = 100g,,,/f = 40, W, = 80W,
- GG: Cin6= Cin7gnand/f= 21'5' Wp= 32W0
* Gy Cins= CineGins/f = 8.7, W, = 17.4W,
- C.;4: Cin4= Cin5gnand/f= 4'7' Wp = 7W0
* Gy: Ciny = CnaGin/f = 1.88, W, = 3.8W,
Double check G,: C,,,= g,,.,4Cina/f = 1, Wp=1.5W,

4.65



4-input Implementation

i C,,.= 100

L

(@)
]
(AR

F=B-G-H=4/3-6/3-100 = 266

fopt = 4.04 (a tad high)
D=4-404+14+1-2+2-1=16.:.16+ 8 =24.16
= Slightly worse than 2-input! Due to self-loading

e Optimal sizing
- G.: C,.=100g, /f=24.75 W,=50W,
« G,:C,y=C, o0, 4/f=8.16, W,=12.5W,
" Gyt Gz = GinaGin/f = 2.02, Wp=4 W,
* Double check G,: C,,,= g,,.,4aCina/f = 1, Wp=1.0W,

4.66



eI Ae Ao

Cin =1 Cout = 1OOI

e F=BGH =4/32*5/3*100 = 296
* fopr =4.14 (a tad high)
e D=4-414+3-2+1-1=16.56 +7 = 23.6 (Best one!)

e Optimal sizing
* Gy: Cps= 100g,,,/f = 24.1, W, = 48W,
* Gy: Cpa= CinsGnana/f = 7.76, W, = 11.6W,,
* Gy: Gy = Cpnalpor/f = 3.125, W, = 7.5W
* Double check G,: G, = gpangCGina/f = 1, W, = 1.5W,

e Lesson: use close to optimal f, use gates with small p

4.67



Logical Effort “Design Flow” (Min Delay)

e Compute the path effort: F= G'B'H
* Find the best number of stages: N, ~ log,(F)
e Compute the stage effort: f = (F)/VN

e Working from either end, determine gate sizes:

[

= Yi

' biCivq

f

Reference: Sutherland, Sproul, Harris, “Logical Effort,” (Morgan-Kaufmann 1999)

4.68



Summary of LE Desigh Methodology

. Buffer non-critical paths with minimum-sized gates

e Minimize loading on critical path

e Simplifies sizing of non-critical path

. Estimate total effort along each path (without branching)

. Verify that the number of stages is appropriate
* Addinvertersif f,,, > 5

. Assign branch ratio of each branch

e Estimate based on the ratio of the effort of the paths
e |gnore paths that have little effect (i.e. min-sized)

e Include wire capacitances

. Compute delays for the design (include parasitic delay)
e Adjust branching ratios (especially with C...)
e Repeat if necessary until delay meets specification

. Re-optimize logic network if f,, is small (Return to step 3)

4.69



