
Timing Analysis

Prof. Dejan Marković
ee216a@gmail.com

ECE M216A

D. Markovic / Slide 2

Two Types of Machines with State

And two quite different abstract models:

• Data storage used for computation
(Data Flows)

• States for sequencing information
(Finite State Machines)

10.2

D. Markovic / Slide 3

Data Flows (Storage for Computation)

• The storage holds data that is being manipulated.
The (enormous) number of bits does not matter.
It is simply the data-set that is being manipulated.

• State is not that important,
it is the flow of data that is critical

10.3

D. Markovic / Slide 4

FSMs (States for Sequencing of Information)

• The storage is used to hold your place in some decision-
making process. It indicates where you are, and using
this information you decide what to do next.

• The amount of state (number of unique decision points)
is finite, and usually limited

▪ One could draw out the “decision graph” showing the
possible transitions between states

10.4

D. Markovic / Slide 5

Timing Analysis

Timing constraints:
• Long path: Setup time

▪ Leads to cycle time violation
▪ Fix: increase cycle time

(can be done during chip operation)
• Short path: Hold time

▪ Leads to functional violation
▪ Fix: insert buffers

(can only be done at design time)

• Clock nonidealities (skew and jitter)
directly impact timing constraints

10.5

D. Markovic / Slide 6

Cycle time : TClk > tClk-Q + tLogic + tSetup

Race margin : tHold < tClk-q,cd + tLogic,cd

Timing: Cycle Time & Race Margin

D Q Combinational
Logic

D QIn

Clk
tClk-Q

tSetup

tClk-Q,cd

tHold

tLogic

tLogic,cd

10.6

D. Markovic / Slide 7

The Setup / Cycle Time Constraint

TClk > tClk-Q + tLogic + tSetup

D Q

Clk

D Q

Clk

Logic

N

tLogictClk-Q tSetup

TClk

Consecutive Clk edges

10.7

D. Markovic / Slide 8

The Hold / Race Margin Constraint

tHold < tClk-Q,cd + tLogic,cd

D Q

Clk

D Q

Clk

Logic

N

tLogic,cdtClk-Q,cd

tHold

Concurrent Clk edges

Race Margin

10.8

D. Markovic / Slide 9

Clock Nonidealities

• Skew: spatial variation in temporally equivalent clock
edges; deterministic + random, tSkew

Clk

Clk

tSkew

tJitter

• Clock jitter: temporal variations in consecutive edges of
the clock signal; modulation + random noise, tJitter

• Variation of the pulse width

▪ For level-sensitive clocking
10.9

D. Markovic / Slide 10

Clock Skew

Distribution of clock tree insertion delay

of registers

Clk delayInsertion delay
tSkew

Max Clk skew

Earliest
Clk edge

𝑨𝒗𝒈 –
𝒕𝑺𝒌𝒆𝒘
𝟐

Avg Latest
Clk edge

𝑨𝒗𝒈 +
𝒕𝑺𝒌𝒆𝒘
𝟐

10.10

D. Markovic / Slide 11

Sources of Skew and Jitter

2

4

3

Power Supply

Interconnect

5 Temperature

6 Capacitive Load

7 Coupling to Adjacent Lines

1 Clock Generation

Devices

10.11

D. Markovic / Slide 12

Positive and Negative Skew

Positive: early – late case

Negative: late – early case

Clk1

Clk2

Early

Late

Clk2

Clk1 Late

Early

TClk Race

TClk Race

10.12

D. Markovic / Slide 13

Signal Routing for Positive and Negative Skew

Positive skew: Clk and Data routed in the same direction

Negative skew: Clk and Data routed in opposite directions

D Q Combinational
Logic

D QIn

Clk Delay

D Q Combinational
Logic

D QIn

ClkDelay
10.13

D. Markovic / Slide 14

Skew + Jitter = Clock Uncertainty

Single parameter used in CAD tools

Clock uncertainty, tCU

10.14

D. Markovic / Slide 15

Clk

TClk

tLogic

tCU

Impact of tCU on Timing: Cycle Time

Cycle time (long path): late – early analysis

TClk > tClk-Q + tLogic + tSetup + |tCU|

Arrival of
NEXT cycle

tClk-Q tSetup

10.15

D. Markovic / Slide 16

Clk

Clk

Impact of tCU on Timing: Race Margin

Race immunity (short path): early – late analysis

tHold + |tCU| < tClk-Q,cd + tLogic,cd

tCU

tHold

tClk-Q,cd tLogic,cd

Data must NOT arrive
before this time

10.16

D. Markovic / Slide 17

Time
Borrowing

10.17

D. Markovic / Slide 18

Time Borrowing: Classification

• Dynamic: scheduling data to arrive to transparent CSE

▪ No “hard” boundaries between stages

▪ In latch-based level sensitive or soft-edge clocking

• Static: control delay between clock inputs

▪ Clocks scheduled to arrive so that the slower paths
obtain more time to evaluate, taking away the time
from faster paths

▪ It can operate with conventional hard-edge CSEs

▪ Also called opportunistic skew scheduling

10.18

D. Markovic / Slide 19

Dynamic Time Borrowing

• Latch-based designs: clock pulse-width can be borrowed
if the next stage can pay it back (with faster logic)

Clk1

Clk2

Logic

Clk1 Clk2

L1 L2

W

Borrow
this time

• Cycle time?

• Race margin?

10.19

D. Markovic / Slide 20

Cycle Time Analysis

Logic delay can be extended by W

TClk + W > tClk-Q + tLogic + tSetup

Clk1

Clk2

W

Borrow
this timeTClk

tLogictClk-Q tSetup

10.20

D. Markovic / Slide 21

Race Margin Analysis: No Time Borrowed

tClk-Q matters in this case

Clk1

Clk2

W

tHold + W < tClk-Q,cd + tLogic,cd

tHold

tClk-Q,cd tLogic,cd

10.21

D. Markovic / Slide 22

Race Margin Analysis: Borrowed Time

Account for borrowed time, tB

Clk1

Clk2

W

tHold

tB tD-Q,cd

tHold + W < tB + tD-Q,cd + tLogic,cd

tLogic,cd

10.22

D. Markovic / Slide 23

Race Margin Analysis: Summary

No time borrowed (more likely critical case)

tHold + W < tClk-Q,cd + tLogic,cd

tHold + W < tB + tD-Q,cd + tLogic,cd

Borrowed time, tB

Min{tB + tD-Q,cd, tClk-Q,cd} critical

10.23

D. Markovic / Slide 24

Two-Phase
Clocking

10.24

D. Markovic / Slide 25

Two-Phase Clocking

Freedom to control two phases and pulse-width

Clk1

Clk2

Logic1

Clk1 Clk2

L1 L2

W

Logic2

Clk1

L3

• Cycle time?

• Bounds on W?

• Max tCU?

10.25

D. Markovic / Slide 26

Two-Phase Clocking: Cycle Time

Assume tClk-Q + tSetup = tD-Q

Clk1

Clk2

tLogic2 tSetup

tD-Q

tLogic1tClk-Q

WTClk

TClk + W > tLogic1 + tLogic2 + 2tD-Q

TClk + W > tClk-Q + tLogic1 + tD-Q + tLogic2 + tSetup

10.26

D. Markovic / Slide 27

Two-Phase Clocking: Min W

Clk1

Clk2

tSetup

tLogictClk-Q

W

TClk /2

TClk /2 + W > tLogic,max + tD-Q
Max
delay

10.27

D. Markovic / Slide 28

Two-Phase Clocking: Max W

Clk1

Clk2

tHold

tLogic,cd

tClk-Q,cd

W

TClk /2

tHold + W < TClk /2 + tClk-Q,cd + tLogic,cd
Min

delay

10.28

D. Markovic / Slide 29

Two-Phase Clocking: Max tCU

W guards against tCU

• Assuming tCU = 2|tSkew|

▪ Both polarities of tSkew

tCU < Wmax – Wmin

|tSkew| < (Wmax – Wmin)/2

10.29

D. Markovic / Slide 30

Summary: 2-Φ Clocking

• Max(tCL1/2) < t1 + t2/4 + t3 – tSetup – tClk-Q – tCU

• Strictly, Max(tCL1 + tCL2) < TClk – 2tD-Q

• Min(tCL1/2) > t1/3 + tHold – tClk-Q + tCU

• More clocking overhead (2 clocks) and low fmax

Latch

Latch

f1

f2
TClk

t1 t2 t3 t4

f1

f2
Comb
Logic 2
Comb
Logic 2

Comb
Logic 1
Comb
Logic 1

10.30

D. Markovic / Slide 31

Clocking Methodology: Pulse-Mode

tCL < TClk – tD-Q

tCL > W + tHold – tClk-Q + tCU

Latch TClk

W

AMD SUN

Comb
Logic
Comb
Logic

Examples

10.31

D. Markovic / Slide 32

Do We Need
Clocks?

10.32

D. Markovic / Slide 33

Minimum Clock Cycle Time Revisited

• Cycle time determined by the delay through logic

▪ It must arrive before the latching edge

▪ If too late, it waits until the next cycle
• Synchronization and sequential order is off

Timing requirement
TCycle > tLogic + tOverhead

Do we really need clocks?

10.33

D. Markovic / Slide 34

Constant Propagation Delay?

• If the propagation delay of CL is constant (regardless of
data input) and is known, we don’t really need clocks
▪ It eliminates the tOverhead

▪ The inherent TCycle of a state-machine will be the delay
▪ It can actually be even faster for data flow

In Out
Combinational Logic (CL)

t0t1t2t3t4t5

Tcycle ≈ Δt = t1 − t0

10.34

D. Markovic / Slide 35

Wave Pipelining

• As the data is propagating down the logic chain
(“wave”), a new “wave” can enter
▪ Provided the delay is constant
▪ As we know, the delay is not constant

In Out
Combinational Logic (CL)

t0t1t2t3t4t5

Tcycle ≈ Δt = t1 − t0

10.35

D. Markovic / Slide 36

Variable Propagation Delay (1/2)

• Delay through a combinational logic depends on

▪ Transition (rise/fall), type of logic, the input position…

D1

Clk

Combinational Logic
Q1 D2 Q2

Clk

Clk

Q1

D2

ΔtLogic

10.36

D. Markovic / Slide 37

Variable Propagation Delay (2/2)

• For wave pipelining, the spread limits the “cycle time”

• Asynchronous uses the signals to indicate “completion,”
so the cycle time varies

Clk

Q1

D2

ΔtLogic

10.37

D. Markovic / Slide 38

Improving Throughput: Pipelining

• In a clocked system, just like wave pipelining but use
clocks to remove the delay uncertainty

▪ This allows 2 “waves” of data to be present inside CL

re
giste

r

re
giste

r

re
giste

r

re
giste

r

re
giste

r

tCL tCLA tCLB

CL
A+B
CL
A+B

CL
A
CL
A

CL
B
CL
B

Tcycle > tCL + tOverhead Tcycle > max(tCLA, tCLB) + tOverhead

• Extend this ad infinitum?

▪ Overhead eventually limits pipelining

▪ Logic granularity limits the resolution
?

10.38

D. Markovic / Slide 39

Examples

10.39

D. Markovic / Slide 40

Tcycle ≥ 8n + 6n + 2*0.5n = 15n (over 2 cycles)

Tcycle ≥ 7.5ns

Latch
Latch

Latch
Latch

f

f

f

f

(8ns, 8ns) (3ns, 6ns)

(3ns, 5ns)(4ns, 6ns)

• Assume: tD-Q = tSetup + tClk-Q = 0.5ns, tHold = 0.2ns

• The delays indicate (min, max) for different paths

Example 10.1: 1-Φ Clock, Min TCycle = ?

10.40

D. Markovic / Slide 41

Wmin must handle time borrowing

• W > 8.0n (max delay) + 0.5n − 7.5n = 1n

Latch
Latch

Latch
Latch

A

f

f

f

f

(8ns, 8ns) (3ns, 6ns)

(3ns, 5ns)(4ns, 6ns)

Example 10.2a: 1-Φ Clock, Min W = ?

TClk + W > tLogic,max + tD-Q
Max
delay

from
10.20

10.41

D. Markovic / Slide 42

Wmax must satisfy hold time

• W < 1n (min delay) + 0.5n − 0.2n = 1.3n

Note: LatchA is always borrowing tB = 1ns!

• W < 1n + 1n (min delay) + 0.5n − 0.2 = 2.3n

Latch
Latch

Latch
Latch

A

f

f

f

f

(8ns, 8ns) (3ns, 6ns)

(3ns, 5ns)(4ns, 6ns)

Example 10.2b: 1-Φ Clock, Max W = ?

tHold + W < tB + tClk-Q,cd + tLogic,cd
Min

delay

from
10.22

10.42

D. Markovic / Slide 43

• Top loop = 2.2 + 2.4 + 0.2*2 = 5ns
• Bottom loop = 1.8 + 2.2 + 0.2*2 = 4.4ns
• Cross loop (2 cycles) = 1.8 + 2.4 + 0.2*2

+ 2.2 + 3.2 + 0.2*2 = 10.4ns
• TCycle ≥ 5.2ns

Comb. Logic

Latch
Latch

Latch
Latch1.8ns

2.2ns

2.2ns

2.4ns

f1b

f1a

f2b

f2a

Example 10.3: 2-Φ Clock, Min TCycle = ?

• Assume: tD-Q = tSetup + tClk-Q = 0.2ns

(1st cycle done early to
give time to 2nd cycle)

10.43

D. Markovic / Slide 44

Latch f1b must latch in the data from f2a

• W > 3.2ns + 0.2ns – 2.6ns = 0.8ns

Comb. Logic

Latch
Latch

Latch
Latch1.8ns

2.2ns

2.2ns

2.4ns

f1b

f1a

f2b

f2a

Assume: tD-Q = 0.2ns, TCycle = 5.2ns, Pos Clk edge by TCycle/2

Example 10.4: 2-Φ Clock, Min W = ?

TClk /2 + W > tLogic,max + tD-Q
Max
delay

from
10.27

10.44

D. Markovic / Slide 45

• W > 0.8ns

If W = TCycle/4 = 1.3ns, what’s the max tCU?
• tCU < 1.3ns – 0.8ns = 0.5ns

Comb. Logic

Latch
Latch

Latch
Latch1.8ns

2.2ns

2.2ns

2.4ns

f1b

f1a

f2b

f2a

Assume: tD-Q = 0.2ns, TCycle = 5.2ns, Pos Clk edge by TCycle/2

Example 10.5: 2-Φ Clock, Max tCU = ?

10.45

D. Markovic / Slide 46

Timing: Summary

• Most systems today are synchronous
▪ Many systems now have some degree of asynchrony

through using multiple phases or self-timing

• Clocking is critical in guaranteeing functionality of a
synchronous system to meet performance
▪ Delay can be too long so that data is not latched
▪ Delay can be too short to cause data to race through
▪ Clock has skew and can cause errors in timing

10.46

D. Markovic / Slide 47

Clocking Methodologies: Summary

• Three different clocking methodologies
▪ 2-phase, edge-triggered, pulse-mode

• Each has their criteria on pulse width (duty cycle)
and cycle time
▪ By using skew or pulse width appropriately, we can

allow delays to exceed the cycle time through time
borrowing

10.47

