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Two Types of Machines with State

And two quite different abstract models:

e Data storage used for computation
(Data Flows)

e States for sequencing information
(Finite State Machines)
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Data Flows (Storage for Computation)

e The storage holds data that is being manipulated.

The (enormous) number of bits does not matter.

It is simply the data-set that is being manipulated.

e State is not that important,
it is the flow of data that is critical
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FSMs (States for Sequencing of Information)

e The storage is used to hold your place in some decision-
making process. It indicates where you are, and using
this information you decide what to do next.

e The amount of state (humber of unique decision points)
is finite, and usually limited

= One could draw out the “decision graph” showing the
possible transitions between states
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Timing Analysis

Timing constraints:
e Long path: Setup time
= Leads to cycle time violation

= Fix: increase cycle time
(can be done during chip operation)

e Short path: Hold time
= Leads to functional violation

= Fix: insert buffers
(can only be done at design time)

e Clock nonidealities (skew and jitter)
directly impact timing constraints
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Timing: Cycle Time & Race Margin
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The Setup / Cycle Time Constraint

Consecutive Clk edges
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The Hold / Race Margin Constraint
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Clock Nonidealities

e Skew: spatial variation in temporally equivalent clock
edges; deterministic + random, t, .,
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e Clock jitter: temporal variations in consecutive edges of

the clock signal; modulation + random noise, t;,,.,

e Variation of the pulse width
= For level-sensitive clocking
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Clock Skew

Distribution of clock tree insertion delay
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Sources of Skew and lJitter

@ Power Supply —_

@

Devices

<| |>| | (D Clock Generation

A\

—

@ Interconnect

)

—

® Capacitive Load

® Temperature

@ Coupling to Adjacent Lines
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Positive and Negative Skew

Positive: early — late case
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Signal Routing for Positive and Negative Skew

Positive skew: C/k and Data routed in the same direction
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Skew + Jitter = Clock Uncertainty

Single parameter used in CAD tools

Clock uncertainty, t.,
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Impact of t., on Timing: Cycle Time

Cycle time (long path): late — early analysis
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NEXT cycle
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Impact of t., on Timing: Race Margin

Race immunity (short path): early — late analysis
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Time
Borrowing



Time Borrowing: Classification

e Dynamic: scheduling data to arrive to transparent CSE
= No "hard" boundaries between stages
= In latch-based level sensitive or soft-edge clocking

e Static: control delay between clock inputs

= Clocks scheduled to arrive so that the slower paths
obtain more time to evaluate, taking away the time
from faster paths

= |t can operate with conventional hard-edge CSEs
= Also called opportunistic skew scheduling
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Dynamic Time Borrowing

e Latch-based designs: clock pulse-width can be borrowed
if the next stage can pay it back (with faster logic)
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Cycle Time Analysis

Logic delay can be extended by W
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Race Margin Analysis: No Time Borrowed
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Race Margin Analysis: Borrowed Time
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Race Margin Analysis: Summary

No time borrowed (more likely critical case)
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Borrowed time, t;
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Two-Phase
Clocking



Two-Phase Clocking

Freedom to control two phases and pulse-width
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Two-Phase Clocking: Cycle Time

Assume tC,k_Q + tSetu'o = tD_Q
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Two-Phase Clocking: Min W
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Two-Phase Clocking: Max W
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Two-Phase Clocking: Max t.,

W guards against t,

tCU < Wmax - Wmin

° Assuming tcu =2 | tSkewl
= Both polarities of t

Skew

ItSkewl < (Wmax mm)/2
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Summary: 2-® Clocking
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Clocking Methodology: Pulse-Mode
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Do We Need
Clocks?



Minimum Clock Cycle Time Revisited

e Cycle time determined by the delay through logic
= |t must arrive before the latching edge

= If too late, it waits until the next cycle
* Synchronization and sequential order is off

Timing requirement

TCycIe > tLogic + tOverhead

Do we really need clocks?
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Constant Propagation Delay?

e |f the propagation delay of CL is constant (regardless of
data input) and is known, we don’t really need clocks

= It eliminates the t,, . 1eaq
" The inherent T, ., of a state-machine will be the delay
= |t can actually be even faster for data flow

Combinational Logic (CL)
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Wave Pipelining

e As the data is propagating down the logic chain
(“wave”), a new “wave” can enter

= Provided the delay is constant
= As we know, the delay is not constant

Combinational Logic (CL)
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Variable Propagation Delay (1/2)

e Delay through a combinational logic depends on
= Transition (rise/fall), type of logic, the input position...
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Variable Propagation Delay (2/2)

Clk J&( AN / N
Q, — K
RS,
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e For wave pipelining, the spread limits the “cycle time”

e Asynchronous uses the signals to indicate “completion,”
so the cycle time varies
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Improving Throughput: Pipelining

e In a clocked system, just like wave pipelining but use

clocks to remove the delay uncertainty
= This allows 2 “waves” of data to be present inside CL
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?

e Extend this ad infinitum?

= Overhead eventually limits pipelining
= Logic granularity limits the resolution
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Examples



1-® Clock, Min T . =

® Assume: tp g = tsey,, + toq = 0-5N8, tygq = 0.2ns
e The delays indicate (min, max) for different paths

18 f ‘/ (4ns, 6ns) \ |5 f /" (3ns, 5ns) \
> T < N R A gl -
- - oY
\ /8/7& 8 6(\6>/’/
~N7 OS/ \;\‘(:S",/
& T 'y Wi
=3 e = — - S == = = — - —
r 5 f \__(8ns, 8ns) / = f \__(3ns, 6ns) /

Teyae 2 8n + 6N +2%0.5n = 15n (over 2 cycles)

|:> Teye 27.5ns
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1-® Clock, Min W ="?

I (- 4ns, 6ns) ) |2 d Iifirls_?m)__\
2 (8, 2 P
T~ \\}‘S,'(D’ -
5| - R
5 f \_ (8ns, 8ns) '/_'%T[(?Ir?s' 6ns)
from
TCIk + W> tLogic,max T tD-Q 10.20

W . must handle time borrowing
|:> W > 8.0n (max delay) + 0.5n - 7.5n = 1n
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1-® Clock, Max W =?

| NG BN O D
0 N - 10 - et
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from
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W _ ., must satisfy hold time

e W< 1n (min delay) + 0.5n -0.2n =1.3n

Note: Latch, is always borrowing t; = 1ns!
|:> e W< 1n+ 1n (mindelay)+ 0.5n - 0.2 =2.3n
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2-Q Clock, Min T

ycle

® Assume: tp g = tsey,, + toq = 0-2N5

5| fia /7 22ns ) 5|2 ™ 2.4ns
—>§—> ———————— > >§-l- B -\-55/7_ _____
S X AN
Comb. Logic 802 >Z
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Pl OF e [ - ——— — plet e € e e - - - =
S \. 18ns J S \_ 2.2ns
flb f2b

e Toploop=2.2+2.4+0.2%¥2 =5ns

* Bottom loop=1.8+2.2+0.2*2 =4.4ns

e Cross loop (2 cycles) =1.8 + 2.4 + 0.2*2
+2.2+3.2+0.2*¥2 =10.4ns

|:> ® Teyle 2 5.2ns (1t cycle done early to

give time to 2" cycle)
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2-® Clock, Min wW="?

Assume: t, o = 0.2ns, T, . = 5.2ns, Pos Clk edge by T¢,./2

ycle
12 fla:f_ 22ns _ ) | fZa:
S S
Comb. Logic
1] N . &
S 1.8ns ) S|,
%] f 7 By,
from
TCIk /2 + W> tLogic,max + tD-Q 10.27

Latch f,, must latch in the data from f,_
e W>3.2ns + 0.2ns — 2.6ns = 0.8ns
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Assume: t; o = 0.2ns, T, . = 5.2ns, Pos Clk edge by T, /2

ycle
18 fa /” 22ns O\ |B fZa‘
» g P = - - - -— » g >
Comb. Logic
r- r-
N | P AR,
o2 e — >
\. 1.8ns
ull 21 fo
e W>0.8ns
If W=T,../4=1.3ns, what’s the max t,?

* t.y <1.3ns-0.8ns =0.5ns
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Timing: Summary

e Most systems today are synchronous

= Many systems now have some degree of asynchrony
through using multiple phases or self-timing

e Clocking is critical in guaranteeing functionality of a
synchronous system to meet performance

= Delay can be too long so that data is not latched
= Delay can be too short to cause data to race through
= Clock has skew and can cause errors in timing
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Clocking Methodologies: Summary

e Three different clocking methodologies
= 2-phase, edge-triggered, pulse-mode

e Each has their criteria on pulse width (duty cycle)
and cycle time

= By using skew or pulse width appropriately, we can
allow delays to exceed the cycle time through time
borrowing
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