lecture
'l 0 Timing Analysis

ECE M216A

Prof. Dejan Markovié
ee2l6a@gmail.com

Two Types of Machines with State

And two quite different abstract models:

e Data storage used for computation
(Data Flows)

e States for sequencing information
(Finite State Machines)

10.2

Data Flows (Storage for Computation)

e The storage holds data that is being manipulated.

The (enormous) number of bits does not matter.

It is simply the data-set that is being manipulated.

e State is not that important,
it is the flow of data that is critical

10.3

FSMs (States for Sequencing of Information)

e The storage is used to hold your place in some decision-
making process. It indicates where you are, and using
this information you decide what to do next.

e The amount of state (humber of unique decision points)
is finite, and usually limited

= One could draw out the “decision graph” showing the
possible transitions between states

10.4

Timing Analysis

Timing constraints:
e Long path: Setup time
= Leads to cycle time violation

= Fix: increase cycle time
(can be done during chip operation)

e Short path: Hold time
= Leads to functional violation

= Fix: insert buffers
(can only be done at design time)

e Clock nonidealities (skew and jitter)
directly impact timing constraints

10.5

Timing: Cycle Time & Race Margin

In —

D Q Combinational D Q—
Logic

JAN

Clk

f

tCIk-Q
Setup
tCIk-Q,cd
thold

t
t

Logic
Logic,cd

Cycle time : T, > teq + tiogic + Lsetup

Race margin : t 4 < Eeik-g,cd F Tiogic,cd

10.6

The Setup / Cycle Time Constraint

Consecutive Clk edges

| tCIk-Q tLogic tSe;cup

Ten > ton gttt +t

Loglc Setup

10.7

The Hold / Race Margin Constraint

Clk

Concurrent Clk edges

Clk

> >

Coica,cd Clogic,ed

tHoId < tCIk-Q,cd + tLogic,cd

10.8

Clock Nonidealities

e Skew: spatial variation in temporally equivalent clock
edges; deterministic + random, t, .,

-n s -n
g g . . g g
g g . . g g
Ld Ld . . Ld Ld
0 0 . . 0 0
g A . . g g
LA . & . . LA LA
T [- - -t
.
.
H

> e

e Clock jitter: temporal variations in consecutive edges of

the clock signal; modulation + random noise, t;,,.,

e Variation of the pulse width
= For level-sensitive clocking

10.9

Clock Skew

Distribution of clock tree insertion delay

of registers
A

Earliest Avg Latest
Clk edge Clk edge
t t
Avg B Skew Avg n Skew
2 2
—
Insertion delay Clk delay
~ “Skew

Méx Clk skéw

10.10

Sources of Skew and lJitter

@ Power Supply —_

@

Devices

<| |>| | (D Clock Generation

A\

—

@ Interconnect

)

—

® Capacitive Load

® Temperature

@ Coupling to Adjacent Lines

10.11

Positive and Negative Skew

Positive: early — late case

Race
Clk, —ﬁ Early Ten

= @

Negative: late — early case

T Race

o

Clk, ﬁ Late
cl kz Early g

10.12

Signal Routing for Positive and Negative Skew

Positive skew: C/k and Data routed in the same direction

In —

Clk

JAN

D Q

f

Combinational D Q
Logic

JAN

#

f

Delay

Negative skew: C/k and Data routed in opposite directions

In —

D Q

N\

_[

Combinational
Logic

t

D QfF—

N\

f

Delay

Clk

10.13

Skew + Jitter = Clock Uncertainty

Single parameter used in CAD tools

Clock uncertainty, t.,

10.14

Impact of t., on Timing: Cycle Time

Cycle time (long path): late — early analysis

Arrival of
NEXT cycle
\ teu
Clk #
tCIk-Q | tLogic tSetup .
» >
TCIk

TCIk > tCIk Q + tLoglc tSetup + ItCUI

10.15

Impact of t., on Timing: Race Margin

Race immunity (short path): early — late analysis

Clk [; '
— "Clk-Q,cd . *Logic,cd
; >—>t0
Clk =

tIu thold &

Data must NOT arrive
before this time

tHoId T ItCUI < tCIk-Q,cd T tLogic,cd

10.16

Time
Borrowing

Time Borrowing: Classification

e Dynamic: scheduling data to arrive to transparent CSE
= No "hard" boundaries between stages
= In latch-based level sensitive or soft-edge clocking

e Static: control delay between clock inputs

= Clocks scheduled to arrive so that the slower paths
obtain more time to evaluate, taking away the time
from faster paths

= |t can operate with conventional hard-edge CSEs
= Also called opportunistic skew scheduling

10.18

Dynamic Time Borrowing

e Latch-based designs: clock pulse-width can be borrowed
if the next stage can pay it back (with faster logic)

Clk,
Clk,

g

w

-

Borrow

this time

e Cycle time?
e Race margin?

10.19

Cycle Time Analysis

Logic delay can be extended by W

Clk
1 — | W

: - >

Clk,
< , Borrow
| Ten ~ this time
| tCIk-Q. tLogic | tSetup

TCIk + W> tCIk Q + tLoglc tSetup

10.20

Race Margin Analysis: No Time Borrowed

Clk,

Clk,

to.q Matters in this case

w
- >
tCIk-Q,cd tLogic,cd
tHoId

tholg ¥ W <topqea T

Logic,cd

10.21

Race Margin Analysis: Borrowed Time

Clk,

Clk,

Account for borrowed time, t;

» >i _

tB | tD-Q,cd | tLogic,cd

tHoId

togt W<tz + tD_Q’cd +t

Logic,cd

10.22

Race Margin Analysis: Summary

No time borrowed (more likely critical case)

thog * W<t qaatt

Logic,cd

Borrowed time, t;

tog T W<t;+ tD_Q’m| +t

Logic,cd

Min{t; + 5 o .o Leieq cqt Critical

1)

10.23

Two-Phase
Clocking

Two-Phase Clocking

Freedom to control two phases and pulse-width

W,
Clk,
Clk,
4)

= - | * Cycle time?

e Bounds on W?
' ' ' e Max t,?

10.25

Two-Phase Clocking: Cycle Time

Assume tC,k_Q + tSetu'o = tD_Q

Tei w

- P —

Clk, =
t..D'Q.

: > —; >

tCIk-Q tLogicl tLogicZ | tSetup
Clk, |

Te ¥ WS toy g+ tiogicn * to.q T tiogica F setup
TCIk + W> tLoglcl tLogicZ + 2tD-Q

10.26

Two-Phase Clocking: Min W

Max
delay TCIk /2 +W> tLogic,max + tD-Q
- TCIk /2 g
Clk, [
. , ! Jetup,
toa tiogi |
Clk, = |

10.27

Two-Phase Clocking: Max W

Min
delay tHoId + W< TCIk /2 + tCIk-Q,cd + tLogic,cd
P TCIk / 2 .
Clk1 tLogicf,cd
tCIk-Q,c(T: "
tHoItli
Clk, |

10.28

Two-Phase Clocking: Max t.,

W guards against t,

tCU < Wmax - Wmin

° Assuming tcu =2 | tSkewl
= Both polarities of t

Skew

ItSkewl < (Wmax mm)/2

10.29

Summary: 2-® Clocking

i ——" "
Lttt
TCIk

® Max(te yp) <ty + b+ ty— tsepy— taq — teu
* Min(tc;/,) >ty 3+ tygg — towa + teu

e More clocking overhead (2 clocks) and low f

max

10.30

Clocking Methodology: Pulse-Mode

Eﬂi
SI' ‘- T >
= Clk

? teL < Tk — toq

te, > W+t~ toka + teu

Examples
Vdd
1 5 1 1H Q
—i HE 0 PE _r':’_.a
¥ e it
D ’;rj s
Clo Ao '?.1 I 10

10.31

Do We Need
Clocks?

Minimum Clock Cycle Time Revisited

e Cycle time determined by the delay through logic
= |t must arrive before the latching edge

= If too late, it waits until the next cycle
* Synchronization and sequential order is off

Timing requirement

TCycIe > tLogic + tOverhead

Do we really need clocks?

10.33

Constant Propagation Delay?

e |f the propagation delay of CL is constant (regardless of
data input) and is known, we don’t really need clocks

= It eliminates the t,, . 1eaq
" The inherent T, ., of a state-machine will be the delay
= |t can actually be even faster for data flow

Combinational Logic (CL)

—{L 1TT1TITT1TI1TI1F
S W—

[} [} [} [}
t. t, t, t, t ¢t
Tcycle = At = t, - t,

10.34

Wave Pipelining

e As the data is propagating down the logic chain
(“wave”), a new “wave” can enter

= Provided the delay is constant
= As we know, the delay is not constant

Combinational Logic (CL)

—{L 1TT1TITT1TI1TI1F
S W—

[} [} [} [}
t. t, t, t, t ¢t
Tcycle = At = t, - t,

10.35

Variable Propagation Delay (1/2)

e Delay through a combinational logic depends on
= Transition (rise/fall), type of logic, the input position...

Clk Clk

D, Tv]Q D, v 1Q
£ —1[Combinational Logic J_z' -

XXX AR A,
0’0‘0’0‘0

10.36

Variable Propagation Delay (2/2)

Clk J&(AN / N
Q, — K
RS,

S5

e For wave pipelining, the spread limits the “cycle time”

e Asynchronous uses the signals to indicate “completion,”
so the cycle time varies

10.37

Improving Throughput: Pipelining

e In a clocked system, just like wave pipelining but use

clocks to remove the delay uncertainty
= This allows 2 “waves” of data to be present inside CL

> 19)S139.

T

C

tCL

tC LA

Y

> 1915139
> 193151894

> 19)S139.

tCLB

> 19)S139.

ycle > tCL + tOverhead Tcycle > n"'ax(tCLA' tCLB) + tOverhead

?

e Extend this ad infinitum?

= Overhead eventually limits pipelining
= Logic granularity limits the resolution

10.38

Examples

1-® Clock, Min T . =

® Assume: tp g = tsey,, + toq = 0-5N8, tygq = 0.2ns
e The delays indicate (min, max) for different paths

18 f ‘/ (4ns, 6ns) \ |5 f /" (3ns, 5ns) \
> T < N R A gl -
- - oY
\ /8/7& 8 6(\6>/’/
~N7 OS/ \;\‘(:S",/
& T 'y Wi
=3 e = — - S == = = — - —
r 5 f __(8ns, 8ns) / = f __(3ns, 6ns) /

Teyae 2 8n + 6N +2%0.5n = 15n (over 2 cycles)

|:> Teye 27.5ns

10.40

1-® Clock, Min W ="?

I (- 4ns, 6ns)) |2 d Iifirls_?m)__\
2 (8, 2 P
T~ \\}‘S,'(D’ -
5| - R
5 f _ (8ns, 8ns) '/_'%T[(?Ir?s' 6ns)
from
TCIk + W> tLogic,max T tD-Q 10.20

W . must handle time borrowing
|:> W > 8.0n (max delay) + 0.5n - 7.5n = 1n

10.41

1-® Clock, Max W =?

| NG BN O D
0 N - 10 - et
> - (8,75 o > 606\,’/
Q - ‘Q_)'_ _ -

< Pl = === = - plep | O e = = === = - - — = >
il _ (8ns, 8ns) / = f _(3ns, 6ns) /

from
thotg ¥ W <ty + o qed ¥ tiogiced 1022

W _ ., must satisfy hold time

e W< 1n (min delay) + 0.5n -0.2n =1.3n

Note: Latch, is always borrowing t; = 1ns!
|:> e W< 1n+ 1n (mindelay)+ 0.5n - 0.2 =2.3n

10.42

2-Q Clock, Min T

ycle

® Assume: tp g = tsey,, + toq = 0-2N5

5| fia /7 22ns) 5|2 ™ 2.4ns
—>§—> ———————— > >§-l- B -\-55/7_ _____
S X AN
Comb. Logic 802 >Z
5 1T
Pl OF e [- ——— — plet e € e e - - - =
S \. 18ns J S _ 2.2ns
flb f2b

e Toploop=2.2+2.4+0.2%¥2 =5ns

* Bottom loop=1.8+2.2+0.2*2 =4.4ns

e Cross loop (2 cycles) =1.8 + 2.4 + 0.2*2
+2.2+3.2+0.2*¥2 =10.4ns

|:> ® Teyle 2 5.2ns (1t cycle done early to

give time to 2" cycle)
10.43

2-® Clock, Min wW="?

Assume: t, o = 0.2ns, T, . = 5.2ns, Pos Clk edge by T¢,./2

ycle
12 fla:f_ 22ns _) | fZa:
S S
Comb. Logic
1] N . &
S 1.8ns) S|,
%] f 7 By,
from
TCIk /2 + W> tLogic,max + tD-Q 10.27

Latch f,, must latch in the data from f,_
e W>3.2ns + 0.2ns — 2.6ns = 0.8ns

10.44

Assume: t; o = 0.2ns, T, . = 5.2ns, Pos Clk edge by T, /2

ycle
18 fa /” 22ns O\ |B fZa‘
» g P = - - - -— » g >
Comb. Logic
r- r-
N | P AR,
o2 e — >
\. 1.8ns
ull 21 fo
e W>0.8ns
If W=T,../4=1.3ns, what’s the max t,?

* t.y <1.3ns-0.8ns =0.5ns

10.45

Timing: Summary

e Most systems today are synchronous

= Many systems now have some degree of asynchrony
through using multiple phases or self-timing

e Clocking is critical in guaranteeing functionality of a
synchronous system to meet performance

= Delay can be too long so that data is not latched
= Delay can be too short to cause data to race through
= Clock has skew and can cause errors in timing

10.46

Clocking Methodologies: Summary

e Three different clocking methodologies
= 2-phase, edge-triggered, pulse-mode

e Each has their criteria on pulse width (duty cycle)
and cycle time

= By using skew or pulse width appropriately, we can
allow delays to exceed the cycle time through time
borrowing

10.47

