

Energy-Delay Optimization

Prof. Dejan Marković ee216a@gmail.com

Some Common Questions

- Is sizing better than V_{DD} for energy reduction?
- Optimal values of gate size and V_{DD}?
- Increase or decrease V_{DD} for energy reduction?
- Optimal ratio of leakage / switching for min E?
- Optimal circuit topology?
- How many levels of parallelism?
- Etc.

Energy Minimization Problem

Energy-Delay Sensitivity

Slope of E-D curve around a design point (e.g. (A_0, B_0))

Solution: Equal Sensitivities

A fixed point is reached when all sensitivities are equal

Circuit Optimization

minimize $Energy(V_{dd}, V_{th}, W)$ subject to $Delay(V_{dd}, V_{th}, W) \leq D_{con}$

Constraints

$$V_{dd}^{min} < V_{dd} < V_{dd}^{max}$$
$$V_{th}^{min} < V_{th} < V_{th}^{max}$$
$$W^{min} < W$$

• Reference design

$$-D_{\min}$$
 sizing @ V_{DD}^{\max} , V_{TH}^{ref}

<u>Goal:</u> find optimal *E-D* tradeoff for a logic function

Energy and Delay Models

Alpha-power based Delay Model

$$Delay = \frac{K_d \cdot V_{DD}}{(V_{DD} - V_{on} - \Delta V_T)^{\alpha_d}} \cdot \left(\frac{W_{out}}{W_{in}} + \frac{W_{par}}{W_{in}}\right)$$

$$V_{DD}^{ref} = 1.2V$$

FO4 (V_{DD}^{ref}) = 25ps

(*) [Sutherland et al., Logical Effort, 1999]

Energy Model

• Switching energy

$$E_{sw} = \alpha_{0 \to 1} \cdot \left(C(W_{out}) + C(W_{par}) \right) \cdot V_{DD}^{2}$$

• Leakage energy

$$E_{lk} = \frac{W_{in}}{W_0} \cdot I_0(S_{in}) \cdot 10^{-\frac{V_T - \gamma_D V_{DD}}{S}} \cdot V_{DD} \cdot D$$

with:

D: the cycle time $I_0(S_{in})$: normalized leakage current with inputs in state S_{in}

Adjusting Switching Energy of a Gate

 $ec_i = K_e \cdot W_i \cdot (V_{DD,i-1}^2 + p_{i,ref} \cdot V_{DD,i}^2)$ (energy stored on the logic gate *i*)

Optimization

Optimization Setup

- Reference/nominal circuit
 - Sized for $D_{\min} \oslash V_{DD}^{\max}$, V_{T}^{ref}
 - Known average activity
- Define delay constraint
 - $D_{\rm con} = D_{\rm min} (1 + d_{\rm inc} / 100)$

- Minimize energy under delay constraint
 - Gate sizing (W), optional buffering
 - $V_{\rm DD}$ and $V_{\rm T}$ scaling

Sensitivity to Sizing and Supply

• Gate sizing (W)

$$-\frac{\partial E_{sw}}{\partial D} / \partial W_{i} = \frac{ec_{i}}{\tau_{ref} \cdot \left(h_{eff,i} - h_{eff,i-1}\right)} \qquad \text{of for equal } h_{eff} \\ (D_{min})$$

• Supply voltage (V_{DD})

$$-\frac{\partial E_{sw}}{\partial D} / \partial V_{DD}}{\partial D} = 2 \cdot \frac{E_{sw}}{D} \cdot \frac{1 - x_v}{\alpha_d - 1 + x_v}}{x_v}$$
$$x_v = \frac{V_{on} + \Delta V_{TH}}{V_{DD}}$$

Sensitivity to Threshold Voltage

• Threshold voltage (V_T)

Low initial leakage

 \Rightarrow speedup comes for "free"

$$-\frac{\partial E / \partial (\Delta V_{TH})}{\partial D / \partial (\Delta V_{TH})} = P_{Lk} \cdot \left(\frac{V_{DD} - V_{on} - \Delta V_{TH}}{\alpha_d \cdot V_0} - 1\right)$$

Circuit Optimization Examples

- Inverter chain
- Memory decoder
 - Branching
 - Inactive gates
- Tree adder
 - Long wires
 - Re-convergent paths
 - Multiple active outputs

Example 14.1: Inverter Chain

- Properties of inverter chain
 - Single path topology
 - Energy increases geometrically from input to output

- Goal
 - Find optimal sizing W = [W₁, W₂, ..., W_N], supply voltage and buffering strategy to minimize energy

Inverter Chain: Gate Sizing & Buffering

- Variable taper achieves minimum energy
- Reduce number of stages at large d_{inc}

Inverter Chain: V_{DD} **Optimization**

- Variable taper achieved by voltage scaling
- V_{DD} reduces energy of the final load first

Inverter Chain: Optimization Results

- Parameter with the largest sensitivity has the largest potential for energy reduction
- Two discrete supplies mimic per-stage V_{DD}

Example 14.2: SRAM Decoder

W vs. V_{DD} for Reducing Energy Peak

- V_{DD} less effective than W optimization
- Buffering also reduces energy peak

[B. Amrutur, Ph.D. Thesis, Stanford, 8/99]

Example 14.3: Tree Adder

Tree Adder: Optimization Results

• Internal energy: W more effective than V_{DD} • For d_{inc} = 10%: $\Delta E_W = -55\%$, $\Delta E_{2Vdd} = -27\%$

A Few Insights

A Look at Tuning Variables...

10% excess delay → 30-70% energy reduction

Peak performance is very power inefficient!

Limited Range of Circuit Optimization

- ±30% around D_{ref}
- Else, too much E or D
- Need for arch. opt.

A Look at Tuning Variables

Equal sensitivity unless variables reach their bounds

A Look at Tuning Variables

Tree Adder: Joint Optimization

- Higher V_{DD} yields a lower energy solution
- Choose a more efficient variable

An Update: Slope-Aware Delay Model

• Logical effort (equal slopes) overestimates delay

Add slope correction

$$D = \sum_{i=1}^{N} \left(g_{i} \cdot h_{i} + p_{i} - \frac{g_{i} \cdot h_{i} - g_{i-1} \cdot h_{i-1}}{K_{i}} \right)$$

Gate & V_{DD}
dependent

Intuition: Slope Factor

- K_{gate} converts slope to delay (fanout)
 - Should be around 2-ish

Result: 16-b Adder Example (H = 256)

Logical effort largely overestimates non-critical paths

Lessons from Circuit Optimization

- Sensitivity-based optimization framework
 - Equal marginal costs ⇔ Energy-efficient design
- Effectiveness of tuning variables
 - Sizing is the most effective for small d_{inc}
 - V_{DD} is better for large delay increments
- Peak performance is VERY power inefficient
 - ~70% energy reduction for 20% delay penalty
- Limited performance range of tuning variables
 - Additional variables for higher energy-efficiency

Choosing Circuit Topology: Optimal Register?

• Given energy-delay tradeoff for adder and register (two register options), what is the best energy-delay tradeoff in the ALU?

Balancing Sensitivity Across Circuit Blocks

Micro-Architectural Optimization

Reducing the Supply Voltage

(while maintaining performance)

Concurrency:

trading off clock frequency versus area to reduce power

A Parallel Implementation

• Slower logic = lower V_{DD} = lower power

Parallelism Example (90nm CMOS)

How many levels of parallelism?

The More Parallel the Better?

- Leakage and overhead start to dominate at high P
- Optimal V_{DD} and min E increase with parallelism

Increasing use of Concurrency Saturates

Subthreshold Leakage: Game Over for CMOS

- Leakage and sub-threshold slope define minimum energy/op for CMOS
- Parallelism cannot reduce energy/op if operating at minimum energy/op

A Pipelined Implementation

Shallower logic reduces required supply voltage

Comparison of Par/Pipe @ Same V_{DD}

 $\frac{P_{par4}}{P_{ref}} = 0.52^2 \cdot \frac{4.3}{4} =$ Parallel $(ov_{\text{par}} = 7.5\%)$ $\frac{P_{par2}}{P_{ref}} = 0.66 \cdot \frac{2.15}{4} =$ $\frac{P_{pipe4}}{r} = 0.52^2 \cdot 1.1 =$ **Pipeline** (ovpar = 10%) $\frac{P_{pipe2}}{P_{ref}} = 0.662 \cdot 1.1 =$

Energy-Delay Space

Delay = 1/Throughput

- Level of concurrency depends on target performance
- Rule of thumb: if speed exceeds MEP, add parallelism

Optimal Designs Have High Leakage

Set V_{T} , find V_{DD} to min E_{OD} for a fixed performance

Parallelism and Pipelining in E-D Space

Time Multiplexing

Energy-Area Tradeoff

Low throughput: Time-Mux = Small Area

Putting it All Together

- Balance logic depth (L_d), adjust latency to reach T_{Clk}
- Optimize V_{DD} and W of the underlying pipelines

Summary: Design Guidelines

- For maximum performance
 - Maximize use of concurrency at the cost of area
- For given performance
 - Optimal amount of concurrency for minimum energy
- For given energy
 - Least amount of concurrency that meets performance
- For minimum energy
 - Solution with minimum overhead (direct mapping between function and architecture)

System Perspective

- Optimizations at higher abstraction levels have greater potential impact
- While circuit techniques may yield improvements in the 10-50% range
- Architecture and algorithm optimizations can reach orders of magnitude power reduction