

Physical Synthesis

Prof. Dejan Marković ee216a@gmail.com

Routing is Everywhere in Your Daily Life

BAD Routing: Waste of Time + Gas!

BAD Routing: Slow Chip + Waste of Energy!

From Synthesis to Place-and-Route (PnR)

```
module ADD(DO, DI_A, DI_B);
 output [31:0] DO;
 input [31:0] DI_A;
 input [31:0] DI_B;
 wire ... ;
 ...
 FADDX1 U31 ( ... );
 FADDX1 U30 ( ... );
 ...
 XOR2X1 U1(...);
 XOR2X1 U2(...);
 INVXO U3(...);
 NAND2X0 U4(...);
 OA21X1 U5 ( ... );
endmodule
```

Synthesis Netlist

Visualization of Netlist

From Synthesis to Place-and-Route (PnR)

Wait! Of Course, Not That Easy...

- IO assignment
- Floor-planning & power-planning
- Cell placement
- Optimization, clock-tree syn. & detailed routing
- Add core filler
- Add IO filler
- DRC, LVS, tapeout
- Bonding (for chip measurements)

Chip Layout vs. Micrograph

How Tool Handles Large-Scale PnR (1)

- Today we're talking about billion-transistor designs
- Continuous design variables for circuit opt.: infeasible
- PnR technology: constrained, discrete optimization
 - Library of standard cells
 - Site, Row-based placement
 - Fixed routing track & pitch
 - Layout exchange format (LEF)

PnR Technology (1)

Standard-Cell Library

- Same height
- Same power rail
- Discrete sizing

Site, Row-Based PnR

- Placement grid
- Easy VDD/VSS connection

PnR Technology (2)

Fixed routing pitch

- On-grid routing
- Lowering complexity of routing algorithm

Layout Ex. Format

- Process info. (layer, design rule, par. RC)
- Simplified view of std. cells & macros

LEF: Technology Information

LEF: Simplified Cell View (1)

PnR tool doesn't care about detailed layout within a cell, it only cares about the shapes of IO pins and VDD/VSS. Simplifying the layout of cells: improved tool runtime

like building a road in front of your home

You don't provide internal layout of your home to workers. You only tell them where the doors are.

LEF: Simplified Cell View (2)

Timing & Noise Analysis

- Static timing analysis (propagation delay)
 - Cell timing library (.lib)
- Parasitic extraction (wire delay)
 - Capacitance table (.captab)
 - QX technology file (.cl)
- Signal integrity (crosstalk, antenna effect)
 - CeltIC library (.cdb)

Crosstalk

- Getting serious in deep-submicron era
 - Smaller pitches
 - Greater height/width ratio
 - Higher clock frequency

Crosstalk Prevention

Placement solution

- Insert buffer in lines
- Upsize driver

Routing solution

- Congestion optimization
- Limit length of parallel nets
- Wider wire spacing
- Shield special nets (e.g. clock)

Antenna Effect

During chip fabrication, metals are initially deposited, covering the entire chip.

Unneeded portions of the metal are removed by etching, typically using plasma (charged particles). Exposed metal collects charges, forming voltage potential. Might be large enough to damage the gate oxide.

Fixing Antenna Problem

Commercial PnR Tool: SoC Encounter

Hybrid GUI-Script Interface

Tool Bar

Design Views

Amoeba View

Display the outline of modules after placement

Floorplan View

Show hierarchical module block guides, connection lines & floorplan objects

Placement View

Display the detailed placement of cells and macro blocks

TU=90.1%	TU=90.3%
CE 00	CE 01
	A FEFE STREET, IL IN TRADUCTORISTICS STREET, S
TU=90.7%	TU=89.8%
TU=90.7%	TU+89.8%
TU=90 7%	TU=09.8%
TU=90.7%	TU=09.8%
TU=90.7%	TU=09.8%

Display Control

Color Display: Floorplan Objects & Physical Layers

(can be customized by yourself)

Layer Control	Layer Control 🛛 🖻 🔀	Layer Control
Floorplan Physical	Floorplan Physical	Floorplan Physical
Hooplan Layers Module Fence Guide Obstruct Region Area Density Instance Std. Cell Cover Cell Block IO Cell Area IO Cell Y Net Special Net Terminal Ruler Text SDP Group Yield Cell Yield Map Density Map	Special Net ✓ Bus Guide ✓ Wire/Via Layers ✓ PO(M0) ✓ CO(V01) ✓ M1(M1) ✓ VIA1(V12) ✓ M2(M2) ✓ VIA2(V23) ✓ M3(M3) ✓ VIA3(V34) ✓ VIA3(V34) ✓ VIA5(V56) ✓ M5(M5) ✓ VIA5(V56) ✓ M6(M6) ✓ VIA6(V67) ✓ M8(M8) ✓ VIA8(V89) ✓ VIA9(V910) ✓ M10(M10) ✓ RV(V1011) ✓	Instance Std. Cell Physical Cell Cover Cell Block P/G Routing Blkg Obstruct Cell Blockage Instance Pin Cell Layout Standard Row Metal Fill Violation Net Special Net Bus Guide Wire/Via Layers PO(M0) CO(V01) M1(M1) VIA1(V12) M2(M2) VIA2(V23) M3(M3) V

Useful Bindkeys

Key	Action	Key	Action
q	Edit Attribute	space	Select Next
f	Zoom Fit	е	Popup Edit
Z	Zoom In	Т	Edit Trim
Z	Zoom Out	0-9	Toggle layer [0-9]
k	Create Ruler	h/H	View Hier. (Up/Down)
Shift + k	Delete All Ruler	X	Clear DRC

More bindkeys: Options → Set Preference → Binding Key

SoC Encounter: General PnR Steps

- File preparation & initial setup
- Floor-planning
 - Specify layout size & power rail names
 - Manually place hard macros (e.g. SRAM blocks, if any)
 - Add power ring & power stripes
 - Special route (connect cells' VDD/VSS to power ring)
- Placement & pre-CTS optimization
- Clock-tree synthesis (CTS) & post-CTS optimization
 - Generate clock specs. & synthesize clock tree
 - Display clock and optimize design
- Detailed routing & post-route opt. (timing & SI driven)
- Layout verification & stream out

SoC Encounter: General PnR Steps

- File preparation & initial setup
- Floor-planning
 - Specify layout size & power rail names
 - Manually place hard macros (e.g. SRAM blocks, if any)
 - Add power ring & power stripes
 - Special route (connect cells' VDD/VSS to power ring)
- Placement & pre-CTS optimization
- Clock-tree synthesis (CTS) & post-CTS optimization
 - Generate clock specs. & synthesize clock tree
 - Display clock and optimize design
- Detailed routing & post-route opt. (timing & SI driven)
- Layout verification & stream out

File Preparation

You Generate

- Gate-level netlist (.vg)
- Design constraints (.sdc)
- Multi-Mode Multi-Corner (MMMC) view (.view)
- IO assignment file (.io)
- Configuration file (.conf)
- Clock specs (.clocktch)

from synthesis result from synthesis result let SoCE generate template (only the 1st time), then manually edit Same ways as above Same ways as above Same ways as above

You Find from Foundry Design Kit

- Timing library (.lib)
- Layout exchange format (.lef)
- Capacitance table (.captab)
- Parasitic extraction tech file (.cl)
- CeltIC noise analysis model (.cdb)
- Stream-out layer map (.map)

Slight Modification of .vg

- When we're at the final chip-level integration stage, we need to connect top-level module IO pins to the chip IO pads to communicate with outside environment
 - Create a new module (e.g. CHIP)
 - Instantiate your top-level module in module CHIP
 - Find names of IO pad modules in process verilog model
 - Manually instantiate the IO pad modules, connect it with top-level modules IO

Find IO pads' names in process verilog file

Slight Modification of .sdc

- Synthesis only considers propagation delay of cells. It doesn't include accurate wire delay information.
- We can't use same clock period as in synthesis for PnR.
 - Suggest: increase 0.2~0.4ns to accommodate parasitic
- I/O delay and the three major design rules (max-fanout, max-transition, max-cap.) might need modification too.

IO Assignment File

Method 1: Follow the format below, store as .io file, then do File → Load → I/O File Method 2: Do Edit → Pin Editor to assign pins after your design is completely loaded. Save it (File → Save → I/O File) for future use

Getting Started!

Login *eeapps.seas.ucla.edu*

Enter *source /usr/apps/cadence/SETUP.EDI10.11*

Enter *encounter* (32-bit version) to open (note: don't enter *encounter* &)

MMMC View Files (1)

Method 1: Follow the format below, store as .view file, then source it in .conf file

Modify # Version: 1.0 MMMC View Definition File # Do Not Remove Above Line create rc corner -name rc corner setup -cap table {.captab file} -qx tech file {.cl file} create rc corner -name rc corner hold -cap table {.captab file} -qx tech file {.cl file} create op cond -name op cond setup -library file {.*lib file*} create op cond -name op cond hold -library file {.*lib file*} create library set -name library setup -timing {.*lib file*} -si {.*cdb file*} create library set -name library hold -timing {.*lib file*} -si {.*cdb file*} create constraint mode -name SDC setup -sdc files ".sdc file name" create constraint mode -name SDC hold -sdc files ".sdc file name" create delay corner -name setup -library set {library setup} -rc corner {rc corner setup} create_delay_corner -name hold -library_set {library_hold} -rc_corner {rc_corner_hold} create_analysis_view -name setup -constraint_mode {SDC_setup} -delay_corner {setup} create analysis view -name hold -constraint mode {SDC hold } -delay corner {hold} set analysis view -setup {setup} -hold {hold}

MMMC View Files (2)

Method 2: Do File → Import Design → Create Analysis Configuration and follow the wizard. Save it as .view file for future use

MMMC Browser		
Analysis View List	MMMC Objects	Wizard Help
Analysis View List ⊕- Analysis Views ⊕- Setup Analysis Views ⊕- Hold Analysis Views	MMMC Objects	Wizard Help This wizard will assist you in specifying the necessary information to configure the system for RC extraction, delay calculation, and timing analysis. It you have all the necessary data available, it is recommended that you configure the system as completely as possible for all steps of the implementation flow - through signoff. If not, you can always update the configuration, if necessary, as you proceed through the flow. If you are comfortable using the MMMC Browser, you can use the Wizard Off button to remove the help dialog, and proceed at your own pace. For additional assistance with design import, press the Next button
Save&Close Load Dela	ete <u>R</u> eset <u>P</u> references	Prev Next Wizard Off <u>C</u> lose <u>H</u> elp

Initial Setup (1)

File → Import Design

Design Import	Eor the first time press Save
Basic Advanced	TOI the hist time, press save
Netlist:	to create an empty conf file
Verilog	
Top Cell: O Auto Assign O By User:	
0 OA	
Cell:	Edit .conf to include required
View:	files (.vgsdclefview)
LEE Eilee	
OA Reference Libraries:	
OA Abstract View Names:	
OA Layout View Names:	Also specify core utilization
Floorplan	
IO Assignment File:	and CIS buffer list in .conf
Analysis Configuration	
Create Analysis Configuration	
	Save it then press Load to
OK Save Load Cancel Help	import the modified .conf

Initial Setup (2)

```
global rda Input
                                                               set rda Input(ui isOrigCenter) {0}
set rda Input(ui isVerticalRow) {0}
set rda Input(import mode)
                                                               set rda Input(ui delay limit) {1000}
   {-treatUndefinedCellAsBbox 0 -keepEmptyModule 1 }
                                                               set rda Input(ui net delay) {1000.0ps}
set rda Input(ui netlist) ".vg file"
                                                               set rda Input(ui net load) {0.5pf}
set rda Input(ui netlisttype) {Verilog}
                                                               set rda_Input(ui_in_tran_delay) {0.0ps}
set rda Input(ui settop) {1}
                                                               set rda Input(ui preRoute cap) {1}
set rda Input(ui topcell) "top module of your design"
                                                               set rda_Input(ui_postRoute_cap) {1}
                                                               set rda Input(ui postRoute xcap) {1}
                                                               set rda Input(ui preRoute res) {1}
set rda Input(ui view definition file) ".view file"
set rda Input(ui timingcon file,full) ".sdc file"
                                                               set rda_Input(ui_postRoute_res) {1}
set rda Input(ui leffile) ".lef file"
                                                               set rda Input(ui shr scale) {1.0}
set rda Input(ui cts cell list)
                                                               set rda Input(ui rel c thresh) {0.03}
{check_standard_cell_library_manual_to_list_the_buffers
                                                               set rda_Input(ui_tot_c thresh) {5.0}
you want for PnR tool to do clock tree synthesis
                                                               set rda Input(ui cpl c thresh) {3.0}
set rda_Input(ui_core_cntl) {aspect}
                                                               set rda_Input(ui_time_unit) {none}
set rda Input(ui aspect ratio) {aspect_ratio_you_want}
set rda Input(ui core util) {utilization you want}
                                                               set rda_Input(ui_pwrnet) {VDD}
                                                               set rda Input(ui gndnet) {VSS}
                                                               set rda Input(flip first) {1}
set rda_Input(ui_row_height)
   {please check lef file for the height of std cell}
                                                               set rda Input(double back) {1}
set rda Input(ui isHorTrackHalfPitch) {0}
                                                               set rda Input(assign buffer) {1}
set rda_Input(ui_isVerTrackHalfPitch) {1}
                                                               set rda_Input(use_io_row_flow) {0}
set rda Input(ui ioOri) {R0}
                                                               set rda Input(ui gen footprint) {0}
```

15.35

SoC Encounter: General PnR Steps

• File preparation & initial setup

Floor-planning

- Specify layout size & power rail names
- Manually place hard macros (e.g. SRAM blocks, if any)
- Add power ring & power stripes
- Special route (connect cells' VDD/VSS to power ring)
- Placement & pre-CTS optimization
- Clock-tree synthesis (CTS) & post-CTS optimization
 - Generate clock specs. & synthesize clock tree
 - Display clock and optimize design
- Detailed routing & post-route opt. (timing & SI driven)
- Layout verification & stream out

Floor-planning

Floorplan → Specify Floorplan

Basic Advanced	Specify core size <i>indirectly</i>
Design Dimensions	using aspect ratio (height
Specify By: 💽 Size 🔾 Die/IO/Core Coordinates	by width) & utilization
Core Size by: Aspect Ratio: Ratio (H/W): 5531258:	
Core Utilization: 0.8499	a7 Or
Cell Utilization: 0.8499	
O Dimension: Width: 718.43	Specify core size <i>directly</i>
Height: 595.9	using dimension (H & W)
O Die Size by: Width: 718.43	
Height: 595.5	
Core Margins by: Core to IO Boundary	
Core to Die Boundary	
Core to Left: 0.0 Core to Top: 0	
Die Size Colculation Use: Max IO Height Min IO Height	
Floorplan Origin at:	
Reserve marg	
Doundary) fo	r power ring

Mapping Cell Power Pins to Global Rail

Floorplan → Connect Global Nets

Mapping Power Nets to Global Rail

Floorplan → Connect Global Nets

Manually Place/Edit Hard Macro (if wanted)

Use 🚸 to move objects to desired locations Edit HALO:

Floorplan \rightarrow Edit Floorplan \rightarrow Edit HALO

Prevent the placement of blocks & std. cells within specified **HALO** region in order to reduce congestion around a block.

🐹 Edit Halo 📃 🗆 🗵			
Specify Halo For All Blocks Selected Blocks/Pads Design			
Routing Halo			
Add/Update			
Halo Value: 0 um			
Bottom Layer: M1 🕨 Top Layer 💠 🗛 🕨			
Remove			
Placement Halo			
Add/Update Block Halo			
Top: 0 um Bottom: 0 um			
Left: 0 um Right: 0 um			
Remove Block Halo			
QK <u>Apply</u> <u>Cancel H</u> elp			

Add Power Ring (1)

Power \rightarrow Power Planning \rightarrow Add Rings

Add Rings	Specify the names of global nets to deliver core power
Ring Type • Core ring(s) contouring • Around core boundary • Along I/O boundary • Exclude selected objects • Block ring(s) around • Each block • Each block • Each reef • Selected power domain/fences/reefs • Each selected block and/or group of core rows • Clusters of selected blocks and/or groups of core rows • User defined coordinates: • User defined coordinates: • Core ring • Block ring Ring Configuration • Ring Configuration • Each selected block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Each reef • Core ring • Block ring • Each reef • Core ring • Block ring • Each reef • Each reef • Each reef • Core ring • Each reef • Each reef	Specify layer , metal width & spacing of power ring
Top: Bottom: Left: Right: Layer: M1 H M2 V M2 V Width: 2 2 2 Spacing: 2 2 2 Offset: Center in channel Specify 0.07 0.07 Option Set Update Basic Update Basic Use option set: Image: Cancel Help	(note: after setting up a new value, press Update to have the tool adjust the values to the nearest legal ones that can pass DRC for you)

Add Power Ring (2)

Power \rightarrow Power Planning \rightarrow Add Rings

How to Decide the Width of Power Ring?

Formula for metal width

Width -	Total Power	<u>1</u>	1
vviutii —	Supply Voltage	^ <u>-</u> ^	Metal Current Density

- Rule-of-thumb current density ~= 4 mA/μm (if >0.5μm & below 100°C).
 For exact value please check process design-rule manual.
- The ¼ is by assuming each edge delivers same amount of current (Note: Above is only for V_{DD} or V_{SS}, should times 2 to get both. Also need to plus metal spacing to pass DRC)

Example: A post-layout core consumes 80 mW@1 Volt. It uses M3 (top & bottom) and M4 (left & right) for power ring, each having density of $4mA/\mu m$. Design rule asks the spacing b/w metals to be >0.5 μm . We want a wire-group interleaved by 2.

Solution: Total width of V_{DD} or $V_{SS} = 0.25 \times (80 \text{mW}/1 \text{Volt})/(4 \text{mA}/\mu\text{m}) = 5 \mu\text{m}$. Total power ring width = $5 \mu\text{m} \times 2(\text{for } V_{DD} + V_{SS}) + 3 \times 0.5 \mu\text{m}(\text{spacing inside ring, as shown in previous page}) + <math>2 \times 0.5 \mu\text{m}(\text{spacing b/w ring & core+IO pads}) = 12.5 \mu\text{m}$. This also tells you should specify 12.5 μ m spacing on each side of the core during floorplan. (Note: Due to 2-bit wire group, the width for each V_{DD} or V_{SS} is in fact $5 \mu\text{m}/2 = 2.5 \mu\text{m}$)

Add Stripe to Enhance Power Delivery

Power \rightarrow Power Planning \rightarrow Add Stripes

d Stripes Basic Advanced Via Generation Optio	e two "encounter obs" ns. in Via Generation page	Spe
Set Configuration Switch to Advance Net(s): VDD VSS Layer: M3 > Direction: Vertical Width: 2	ced page to check the two can also setup wire group & n as we did for power ring.	(me wid
Spacing: 2		ן t
Set-to-set distance: 100 Number of sets: 1 Bumps Over Between Over P/G pins Pin layer: Top pin layer Selected blo	set-to-set distance	Tip: W M
Stripe Boundary Core ring Pad ring Inner Outer Design boundary Create pins Each selected block/domain/fence All domains Specify rectangular area	art point of e first stripe	
Specify rectilinear area First/Last Stripe Start from: I eft right Relative from core or selected area X from left Absolute locations Option Set		
Use option set: Update Basic Update Basic	<u>Cancel</u> <u>H</u> elp	

Specify the stripe information (metal layer it uses, direction, width and spacing). Update to get DRC-legal values.

Tip: We usually only put vertical stripes using M2 or M4 because std cells' VDD/VSS rail naturally serve as horizontal stripes.

Special Route: Connect Std. Cell Power Pins

SoC Encounter: General PnR Steps

- File preparation & initial setup
- Floor-planning
 - Specify layout size & power rail names
 - Manually place hard macros (e.g. SRAM blocks, if any)
 - Add power ring & power stripes
 - Special route (connect cells' VDD/VSS to power ring)
- Placement & pre-CTS optimization
- Clock-tree synthesis (CTS) & post-CTS optimization
 - Generate clock specs. & synthesize clock tree
 - Display clock and optimize design
- Detailed routing & post-route opt. (timing & SI driven)
- Layout verification & stream out

Placement (1)

Placement: highly dependent on IO locations & floorplan, and can affect circuit performance

Placement (2)

$Place \rightarrow Specify \rightarrow Placement Blockage$

Place → Physical Cell → Add End Cap

💥 Add End Cap Instances	_ 🗆 🗙
Pre Cap Cell	(Select)
Post Cap Cell	Select
Prefix ENDCAP	
🔲 Fill Area Draw	
IIX III	
urx ury	
<u>OK</u> <u>Apply</u> <u>Cancel</u>	<u>H</u> elp

Placement (3)

Place → Place Standard Cells and Blocks

Pre-CTS Optimization

Timing → Report Timing

(check setup or hold to see timing info.)

Optimize → **Opt.** Design

(check Pre-CTS, setup and DRV)

🔏 Timing Analysis	🕅 Optimization 📃 🗖 🗙
	- Design Stage
Basic Advanced	Pre-CTS O Post-CTS O Post-Route
Use Existing Extraction and Timing Data	- Optimization Type
Design Stage	🗹 Setup 📃 Hold
🔾 Pre-Place 🖲 Pre-CTS 🔾 Post-CTS 🔾 Post-Route 🔾 Sign-Off	Incremental
Analusia Tuma	Design Rules Violations
	🔲 Мах Сар
Setup Unold	🗹 Max Tran
	Max Fanout
Reporting Options	Include SI SI Options
Number of Paths: 50	OK Anniv Mode Default Close Hein
Report file(s) Prefix: CORE_QUAD_0_preCTS	Their Their Terant Ciose Helb
Output Directory: timingReports	ip: We suggest to fix all DRV during pre-CTS opt. stage
	and check only Max Cap and Max Tran in post-CTS
	and post-Route. Also we can change to Incrementa
OK Apply Cancel Help	option if the timing violation is almost fixed.
Time Timing A Debug Timing allows you to see detailed	Contra ont for multiple
dolay info of all paths, including clack statistics, node	Can try opt. for multiple
parasitics, wire length from one node to another, etc.	times to pass the timing

SoC Encounter: General PnR Steps

- File preparation & initial setup
- Floor-planning
 - Specify layout size & power rail names
 - Manually place hard macros (e.g. SRAM blocks, if any)
 - Add power ring & power stripes
 - Special route (connect cells' VDD/VSS to power ring)
- Placement & pre-CTS optimization
- Clock-tree synthesis (CTS) & post-CTS optimization
 - Generate clock specs. & synthesize clock tree
 - Display clock and optimize design
- Detailed routing & post-route opt. (timing & SI driven)
- Layout verification & stream out

Clock Tree Synthesis (CTS) (1)

Clock tree propagate clock signals, through clock buffers, to each of the registers

Clock problem

- Heavy net loading
- Long insertion delay
- Skew
- Coupling
- Power consumption
- Electromigration

Clock Tree Synthesis (CTS) (2)

Clock → Synthesize Clock Tree

Display Clock Tree to See Clock Distribution

Clock → Display → Display Clock Tree

Post-CTS Optimization

Optimize → Optimize Design

(check Post-CTS, setup and DRV to fix setup time. Change to hold to fix hold time)

press Mode to enable advanced opt. features

💥 Mode Setup		
- List of Modes -	Optimization Mode	
СТS	Timing Effort	
ClockMesh	C Low	
NanoRoute	Leakage Power Effort	- Set setup slack threshold to
Optimization	● None	
ScanReorder	Dynamic Power Effort	he >0 helps hold-time fixing
StreamOut	None Low High	
OasisOut	Yield Effort	
TrialRoute	None Low High	
	Area Optimization	
	🗹 Reclaim Area 🗹 Simplify Netlist	
	Thresholds	
	Setup Slack (ns): 0.1 Hold Slack (ns): 0.01	
	Max Density: 0.99 DRV Margin: 0	
	Useful Skew	
	Allow	
	Maximum Skewing 🔲 No Boundary Skewing	Orig. max. utilization=0.95.
	Use Cells: ND12BWP CKND0BWP}	
	Maximum Allowed Delay: 1	can change to higher value
	Set Defaults	
	OK <u>Apply</u> <u>Cancel</u> <u>H</u> elp	
		15.

SoC Encounter: General PnR Steps

- File preparation & initial setup
- Floor-planning
 - Specify layout size & power rail names
 - Manually place hard macros (e.g. SRAM blocks, if any)
 - Add power ring & power stripes
 - Special route (connect cells' VDD/VSS to power ring)
- Placement & pre-CTS optimization
- Clock-tree synthesis (CTS) & post-CTS optimization
 - Generate clock specs. & synthesize clock tree
 - Display clock and optimize design
- Detailed routing & post-route opt. (timing & SI driven)
- Layout verification & stream out

Detailed Route

Route \rightarrow Nano Route \rightarrow Route

Step 1: Press Mode, go to DFM, Step 2: Check following options check Spread Wire

			💥 NanoRoute
			- Routing Phase
ming/SI DFM Antenna AdvDRC Misc	1		🗹 Global Route
t Via Optimization			🗹 Detail Route 🛛 S
ow 🔾 Medium 🔾 High			Post Route Optimiza
e Via Optimization			- Concurrent Routin
s With Larger Overhangs First			Fix Antenna
e Via Count			
none 🔾 single cut 🔾 multiple cut			Timing Drivon
e Wire Optimization			🗹 Timing Driven
Wire Minimum Length 2			SI Driven
🖲 none 🔾 widen 🔾 unwiden			Deet Deute SI
e Rule NA Minimum Length 1			
lack 0			📃 Litho Driven
rs Fixing			📃 🔲 Post Route Litho
iuan 🗌 Poet Pouta Litho Benair			- Routing Control -
			📃 Selected Nets O
			ECO Route
			Area Boute
	/		Job Control
Anniu	Help		🗹 Auto Stop
	Tielb	/	Num
			Number of CUP(s) p
e		10.10	Number of
For optimized time	ing, set Effort =	=10; If [Set Multiple CP
design highly con	rested set Fff	o # 1	
aesign nigniy con	gesteu, set Em		OK Apply
	ming/SI DFM Antenna AdvDRC Mise t Via Optimization w Medium High te Via Optimization is With Larger Overhangs First e Via Count in me single cut multiple cut te Wire Optimization Wire Minimum Length 2 e none widen unviden re Rule NA Minimum Length 1 lack 0 rs Fixing fror optimized timi design highly cong	Iming/SI DFM Antenna AdvDRC Mise tVa Optimization wikit Larger Overhangs First e Via Count Immediation wire Minimum Length 2 e None wirden unwiden e NA+ Minimum Length 1 tack 0 Fixing riven Post Route Litho Repair For optimized timing, set Effort= design highly congested, set Effort=	Iming/Si DFM Antenna AdvDRC Misc tv A Optimization ow Medium High e Via Optimization si with Larger Overhangs First e Via Count Inone widen unwiden e Rule NA / Minimum Length 1 iack 0 rs Fixing riven Post Route Litho Repair For optimized timing, set Effort=10; if design highly congested, set Effort=11

(can set multi-CPU to speed up)

ManoRoute			
Routing Phase			
🗹 Global Route			
☑ Detail Route Start Iteration 0	End Iteration default		
Post Route Optimization 🔲 Optimize V	ia 🔲 Optimize Wire		
Concurrent Routing Features			
🗹 Fix Antenna 🛛 🗹 Insert Die	odes Diode Cell Name		
☑ Timing Driven Effort 5	Congestion Timing S.M.A.R.T.		
🗹 SI Driven			
Post Route SI SI Victim Fil	e 🗁		
🔲 Litho Driven			
🔲 Post Route Litho Repair			
Routing Control			
Selected Nets Only Bottom Laye	r 1 Top Layer 7		
ECO Route			
🗌 Area Route 🛛 Area	Select Area and Route		
Job Control			
🖌 Auto Stop			
Number of Local CPU(s): 1			
Number of CUP(s) per Remote Machine: 1			
Number of Remote Machine(s): 0			
Set Multiple CPU			
<u>O</u> K <u>A</u> pply A <u>t</u> tribute	Mode Save Load Cancel Help		

Post-Route Optimization

Optimize → Optimize Design

(check **Post-Route, setup** and **DRV** to fix **setup time**. Change to **hold** to fix **hold time**)

MOptimization				
Design Stage				
Pre-CTS	Post-CTS	🖲 Post-Ro	ute	
Optimization Type				
 ✓ Setup ○ Incremental ● Design Rules Via ✓ Max Cap ✓ Max Tran ○ Max Fanout ✓ Include SI 	Diations	old	Note: M time fin again Include S noise-av	Aust fix setup/hold rst, then fix timing by checking the SI option for further ware optimization.
<u>o</u> k <u>A</u> pply	<u>M</u> ode <u>D</u> e	fault <u>C</u> lose	<u>H</u> elp	

Adding Fillers to Fill Unplaced Core Area

$Place \rightarrow Physical Cell \rightarrow Add Filler$

tip: use left click + drag to select multiple fillers at once.

SoC Encounter: General PnR Steps

- File preparation & initial setup
- Floor-planning
 - Specify layout size & power rail names
 - Manually place hard macros (e.g. SRAM blocks, if any)
 - Add power ring & power stripes
 - Special route (connect cells' VDD/VSS to power ring)
- Placement & pre-CTS optimization
- Clock-tree synthesis (CTS) & post-CTS optimization
 - Generate clock specs. & synthesize clock tree
 - Display clock and optimize design
- Detailed routing & post-route opt. (timing & SI driven)
- Layout verification & stream out

Verify Layout

DRC: Verify → Verify Geometry

(should get zero error, otherwise gotta fix them)

Begin Summary				
Cells	: 0			
SameNet	: 0			
Wiring	: 0			
Antenna	: 0			
Short	: 0			
0verlap	: 0			
End Summary				
Verification Complete : O Viols. O Wrngs.				

• LVS: Verify → Verify Connectivity

Begin Summary Found no problems or warnings. End Summary Antenna violation: Verify →
 Verify Process Antenna

🕅 Verify Process Antenna 📃 🗖 🗙				
Output Files				
Antenna LEF: CORE_QUAD_0.antenna.lef 📄 🖻				
Report: CORE_QUAD_0.antenna.rpt 📄				
Generate detailed report				
Nets				
● All				
○ Selected				
O Named:				
Report Limits				
Check Power And Ground Nets				
Skip Checking On I/O Pins				
Maximum Number Of Error: 1000				
OK <u>Apply</u> <u>Cancel H</u> elp				

Stream Out GDS File

$\mathsf{Design} \xrightarrow{} \mathsf{Save} \xrightarrow{} \mathsf{GDS}/\mathsf{OASIS}$

🕅 GDS/OASIS Export			
Output Format 💿 GDSII/Stream 🔾 OASIS	Decide the name of .gds &		
Output File CHIP.gds	library it's gonna he belong		
Map File streamOut.map			
Library Name EE216A_CHIP_Lib	to. Source the .map from		
Structure Name CORE_QUAD_0	foundry design kit		
Attach Instance Name to Attribute Number			
Attach Net Name to Attribute Number	Check Structure Name,		
🗌 Merge Files 📄 📄 Uniquify Ce	nress OK to generate		
Stripes 1			
🔲 Write Die Area as Boundary			
Write abstract information for LEF Macros			
Units 2000 🕨			
Mode ALL >			
<u>O</u> K <u>Apply</u> <u>Cancel <u>H</u>el</u>	q		

Post-Layout Parasitic/LEF/Netlist/SDF/LIB

Parasitic: Timing → Extract RC

🐹 Extract RC	
Save RC	
Save Cap to CORE_QUAD_0.cap	6
Save Setload to CORE_QUAD_0.setload	6
Save Set Resistance to CORE_QUAD_0.setres	
Save SPF to CORE_QUAD_0.spf	
Save SPEF to CORE_QUAD_0.spef	
RC Corner to Output tcbn45gs_1p10m7x2z_rc_bc	:1d1 🔽
<u>O</u> K <u>Apply</u> <u>Cancel H</u>	lelp

Check **Save SPEF to** and name the **.spef** file. Don't forget to generate **.spef** for both best- and worse-case RC corners. We use **.spef** in post-layout simulation

LEF, Netlist, SDF: Using commands

saveNetlist XXX_sim.vg (for post-sim.)
saveNetlist -flattenBus -includePowerGround
XXX_lvs.vg (for Calibre LVS check)
lefOut XXX.lef -stripePin
write_sdf XXX.sdf

LIB: Using commands

setAnalysisMode -checkType setup
do_extract_model XXX_setup.lib
setAnalysisMode -checkType hold
do_extract_mode XXX_hold.lib

Post-Layout Simulation & Bottom-Up Design

• Post-layout simulation

- Prepare .vg, and .sdf from SoC Encounter
- Do the same thing as in pre-layout gate-level simulation

• Bottom-up hierarchical design flow

- Once having .lef and .lib, your design can be treated as a "big" standard cell. We call it as a macro block.
- At higher-level integration, just source that .lef and .lib and do the same thing as in bottom-level PnR.

Summary

- Physical synthesis tool processes the design from gate to transistor level
- Slightly modify .vg and .sdc if necessary
- Take some time to carefully think about your floorplan & I/O locations to get optimized circuit performance
 - Can affect wiring congestion
 - Suggested core dimension: as square as possible
- Optimize timing in each design stage
 - pre-cts: setup
 - post-cts: setup + hold
 - post-route: setup + hold + SI
- Make sure to pass build-in DRC & LVS before finish